Page 411 - IJB-10-4
P. 411
International Journal of Bioprinting Design of biofixed metamaterial bone plates and fillers
5. Li S, Huan Y, Zhu B, Chen H, et al. Research progress on doi: 10.1126/scitranslmed.aam8828
the biological modifications of implant materials in 3D 14. Huri G. Adjustable bone plate: state of art. Turk J Med Sci.
printed intervertebral fusion cages. J Mater Sci Mater Med. 2020;50(10):1723-1727.
2022;33(1):1-13. doi: 10.3906/sag-2002-69
doi: 10.1007/s10856-021-016609-4
15. Kunjin H, Xiang Z, Yuxue Z. Custom-designed orthopedic
6. Korkmaz ME, Gupta MK, Robak G, Moj K, Krolczyk GM, plates using semantic parameters and template. Med Biol
Kuntoğlu M. Development of lattice structure with selective Eng Comput. 2019;57(4):765-775.
laser melting process: a state of the art on properties, future doi: 10.1007/s11517-018-1916-y
trends and challenges. J Manuf Process. 2022;81:1040-1063.
doi: 10.1016/j.jmapro.2022.07.051 16. Vijayavenkataraman S, Gopinath A, Lu WF. A new design of
3D-printed orthopedic bone plates with auxetic structures
7. Cong Z, Dejun J, Fanchun L, Yitong X, Yuan Z. Design and to mitigate stress shielding and improve intra-operative
simulation of titanium alloy lattice plate for 3D printing. J bending. Bio-Des Manuf. 2020;3(2):98-108.
Shanghai Jiaotong Univ. 2021;55(2):170-178. doi: 10.1007/s42242-020-00066-8
doi: 10.26226/m.5efe04779b888 de4950e7833
17. Liu B, Ma Z, Li J, et al. Experimental study of a 3D printed
8. Wang L, Chen J, Yang Y, et al. Convenient design method permanent implantable porous Ta-coated bone plate for
for personalized bone plate components. Mech Eng Autom. fracture fixation. Bioact Mater. 2021;10:269-280.
2022;(1):11-13. doi: 10.1016/j.bioactmat.2021.09.09
doi: 10.1016/j.procir.2019.04.170
18. Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of
9. Sun P, Zhang Y, Yin P, Liu H, Li B. Topological optimization pore size on bone ingrowth into porous titanium implants
design method for implicit surface gradient porous fabricated by additive manufacturing: an in vivo experiment.
structures. J Xi’an Jiaotong Univ. 2022;56 (1):85-95. Mater Sci Eng C Mater Biol Appl. 2016;59:690-701.
doi: 10.1007/1-4020-4752-5_56 doi: 10.1016/j.msec.2015.10.069
10. Wei Z, Li H, Xiong X, Zhou F, Zhou Y, Shaung F. 3D printed 19. Li F, Li J, Xu G, Liu G, Kou H, Zhou L. Fabrication, pore
personalized plate internal fixation for the treatment of structure and compressive behavior of anisotropic porous
severe tibial plateau fractures. Chin J Bone Jt Inj. 2021;36(10): titanium for human trabecular bone implant applications.
1087-1089. J Mech Behav Biomed Mater. 2015;46:104-114.
doi: 10.21275/v5i4.nov162687 doi: 10.1016/j.jmbm.2015.02.023
11. Wang S, Gao K, Xu Z, et al. 3D printing assisted traditional 20. Chang B, Song W, Han T, et al. Influence of pore size of
steel plate internal fixation for complex tibial plateau porous titanium fabricated by vacuum diffusion bonding
fractures. China Tissue Eng Res. 2022;26(18):2823-2827. of titanium meshes on cell penetration and bone ingrowth.
doi: 10.18535/jmscr/v8i2.06 Acta Biomater. 2016;311-321.
12. Zhang S, Yang C, Qi H, et al. 3D printed simulated surgery doi: 10.1016/j.actbio.2016.01.022
combined with customized steel plate fixation for the 21. Liu L, et al. Design and performance study of personalized
treatment of femoral shaft fractures caused by sequelae of porous femoral combined scaffold. Sichuan University.
poliomyelitis. China Tissue Eng Res. 2020;24(12):1875-1880. 2021.
doi: 10.1016/s020-1383(98)00049-7 doi: 10.1016/j.mehy.2019.109374
13. Pobloth AM, Checa S, Razi H, et al. Mechanobiologically 22. Zhang G, Yang Y, Zhang Z, Song C, Wang A, Yu J.
optimized 3D titanium-mesh scaffolds enhance bone Optimization design of support structure for laser selective
regeneration in critical segmental defects in sheep. Sci Transl melting formed parts. China Laser. 2016;43(12):59-66.
Med. 2018;10(423):eaam8828. doi: 10.32657/10356/151396
Volume 10 Issue 4 (2024) 403 doi: 10.36922/ijb.2388

