Page 531 - IJB-10-5
P. 531
International Journal of Bioprinting 3D model of neurogenesis in Alzheimer’s disease
68. Łabowska MB, Cierluk K, Jankowska AM, Kulbacka J, caused by SBF immersion method. Mater Res. 2021;24(4):
Detyna J, Michalak IJM. A review on the adaption of e20200587.
alginate-gelatin hydrogels for 3D cultures and bioprinting. doi: 10.1590/1980-5373-MR-2020-0587
Materials (Basel). 2021;14(4):858.
doi: 10.3390/ma14040858 80. Vosough F, Barth A. Characterization of homogeneous and
heterogeneous amyloid-β42 oligomer preparations with
69. Shams E, Barzad MS, Mohamadnia S, Tavakoli O, Mehrdadfar biochemical methods and infrared spectroscopy reveals a
AJJoBA. A review on alginate-based bioinks, combination correlation between infrared spectrum and oligomer size.
with other natural biomaterials and characteristics. ACS Chem Neurosci. 2021;12(3):473-488.
J Biomater Appl. 2022;37(2):355-372. doi: 10.1021/acschemneuro.0c00642
doi: 10.1177/08853282221085690
81. Fraser PE, Nguyen JT, Inouye H, et al. Fibril formation
70. Ioannidis K, Danalatos RI, Champeris Tsaniras S, et al. A by primate, rodent, and Dutch-hemorrhagic analogues
custom ultra-low-cost 3D bioprinter supports cell growth of Alzheimer amyloid beta-protein. Biochemistry.
and differentiation. Front Bioeng Biotechnol. 2020;8:580889. 1992;31(44):10716-10723.
doi: 10.3389/fbioe.2020.580889 doi: 10.1021/bi00159a011
71. Leonardo M, Prajatelistia E, Judawisastra HJB. Alginate- 82. Zandomeneghi G, Krebs MR, McCammon MG, Fändrich
based bioink for organoid 3D bioprinting: a review. M. FTIR reveals structural differences between native
Bioprinting. 2022;28:e00246. beta-sheet proteins and amyloid fibrils. Protein Sci.
doi: 10.1016/j.bprint.2022.e00246 2004;13(12):3314-3321.
72. Mondal A, Gebeyehu A, Miranda M, et al. Characterization doi: 10.1110/ps.041024904
and printability of Sodium alginate-gelatin hydrogel 83. Sarroukh R, Goormaghtigh E, Ruysschaert J-M, Raussens
for bioprinting NSCLC co-culture. Sci Rep. 2019; V. ATR-FTIR: A “rejuvenated” tool to investigate amyloid
9(1):19914. proteins. Biochim Biophys Acta. 2013;1828(10):2328-2338.
doi: 10.1038/s41598-019-55034-9 doi: 10.1016/j.bbamem.2013.04.012
73. Hiller T, Berg J, Elomaa L, et al. Generation of a 3D liver 84. Yankner BA, Duffy LK, Kirschner DA. Neurotrophic
model comprising human extracellular matrix in an alginate/ and neurotoxic effects of amyloid beta protein: reversal
gelatin-based bioink by extrusion bioprinting for infection by tachykinin neuropeptides. Science (New York, NY).
and transduction studies. Int J Mol Sci. 2018;19(10):3129. 1990;250(4978):279-282.
doi: 10.3390/ijms19103129 doi: 10.1126/science.2218531
74. Di Giuseppe M, Law N, Webb B, et al. Mechanical behaviour 85. Mazur-Kolecka B, Golabek A, Nowicki K, Flory M,
of alginate-gelatin hydrogels for 3D bioprinting. J Mech Frackowiak J. Amyloid-beta impairs development of
Behav Biomed Mater. 2018;79:150-157. neuronal progenitor cells by oxidative mechanisms.
doi: 10.1016/j.jmbbm.2017.12.018 Neurobiol Aging. 2006;27(9):1181-1192.
75. Freeman FE, Kelly DJJSr. Tuning alginate bioink stiffness doi: 10.1016/j.neurobiolaging.2005.07.006
and composition for controlled growth factor delivery and 86. Wang X, Sun X, Gan D, et al. Bioadhesive and conductive
to spatially direct MSC fate within bioprinted tissues. Sci hydrogel-integrated brain-machine interfaces for conformal
Rep. 2017;7(1):17042. and immune-evasive contact with brain tissue. Matter.
doi: 10.1038/s41598-017-17286-1 2022;5(4):1204-1223.
76. Chung JH, Naficy S, Yue Z, et al. Bio-ink properties and doi: 10.1016/j.matt.2022.01.012
printability for extrusion printing living cells. Biomater Sci. 87. Pettikiriarachchi JTS, Parish CL, Shoichet MS, Forsythe JS,
2013;1(7):763-773. Nisbet DR. Biomaterials for brain tissue engineering. Aust J
doi: 10.1039/C3BM00012E Chem. 2010;63(8):1143-1154.
77. Maihemuti A, Zhang H, Lin X, et al. 3D-printed fish gelatin doi: 10.1071/CH10159
scaffolds for cartilage tissue engineering. J Bioact Mater. 88. Sadeghi A, Afshari E, Hashemi M, Kaplan D, Mozafari M.
2023;26:77-87. Brainy biomaterials: latest advances in smart biomaterials to
doi: 10.1016/j.bioactmat.2023.02.007 develop the next generation of neural interfaces. Curr Opin
78. Derkach SR, Voron’ko NG, Sokolan NI, Kolotova DS, Biomed Eng. 2023;25:100420.
Kuchina YA. Interactions between gelatin and sodium doi: 10.1016/j.cobme.2022.100420
alginate: UV and FTIR studies. J Dispers Sci Technol. 89. Bierman‐Duquette RD, Safarians G, Huang J, et al.
2020;41(5):690-698. Engineering tissues of the central nervous system: interfacing
doi: 10.1080/01932691.2019.1611437
conductive biomaterials with neural stem/progenitor cells.
79. Costa HdS, Dias MR. Alginate/bioactive glass beads: Adv Healthc Mater. 2022;11(7):2101577.
synthesis, morphological and compositional changes doi: 10.1002/adhm.202101577
Volume 10 Issue 5 (2024) 523 doi: 10.36922/ijb.3751

