Page 531 - IJB-10-5
P. 531

International Journal of Bioprinting                          3D model of neurogenesis in Alzheimer’s disease




            68.  Łabowska MB, Cierluk K, Jankowska AM, Kulbacka J,   caused by SBF immersion method. Mater Res. 2021;24(4):
               Detyna J, Michalak IJM. A review on the adaption of   e20200587.
               alginate-gelatin hydrogels for 3D cultures and bioprinting.      doi: 10.1590/1980-5373-MR-2020-0587
               Materials (Basel). 2021;14(4):858.
               doi: 10.3390/ma14040858                         80.  Vosough F, Barth A. Characterization of homogeneous and
                                                                  heterogeneous amyloid-β42 oligomer preparations with
            69.  Shams E, Barzad MS, Mohamadnia S, Tavakoli O, Mehrdadfar   biochemical methods and infrared spectroscopy reveals a
               AJJoBA. A review on alginate-based bioinks, combination   correlation between infrared spectrum and oligomer size.
               with other natural biomaterials and characteristics.    ACS Chem Neurosci. 2021;12(3):473-488.
               J Biomater Appl. 2022;37(2):355-372.               doi: 10.1021/acschemneuro.0c00642
               doi: 10.1177/08853282221085690
                                                               81.  Fraser PE, Nguyen JT, Inouye H, et al. Fibril formation
            70.  Ioannidis K, Danalatos RI, Champeris Tsaniras S, et al. A   by primate, rodent, and Dutch-hemorrhagic analogues
               custom ultra-low-cost 3D bioprinter supports cell growth   of  Alzheimer  amyloid  beta-protein.  Biochemistry.
               and differentiation. Front Bioeng Biotechnol. 2020;8:580889.  1992;31(44):10716-10723.
               doi: 10.3389/fbioe.2020.580889                     doi: 10.1021/bi00159a011
            71.  Leonardo M, Prajatelistia E, Judawisastra HJB. Alginate-  82.  Zandomeneghi G, Krebs MR, McCammon MG, Fändrich
               based bioink for organoid 3D bioprinting: a review.   M. FTIR reveals structural differences between native
               Bioprinting. 2022;28:e00246.                       beta-sheet proteins and amyloid fibrils.  Protein Sci.
               doi: 10.1016/j.bprint.2022.e00246                  2004;13(12):3314-3321.
            72.  Mondal A, Gebeyehu A, Miranda M, et al. Characterization      doi: 10.1110/ps.041024904
               and printability of Sodium alginate-gelatin hydrogel   83.  Sarroukh R, Goormaghtigh E, Ruysschaert J-M, Raussens
               for bioprinting NSCLC co-culture.  Sci  Rep. 2019;   V. ATR-FTIR: A “rejuvenated” tool to investigate amyloid
               9(1):19914.                                        proteins. Biochim Biophys Acta. 2013;1828(10):2328-2338.
               doi: 10.1038/s41598-019-55034-9                    doi: 10.1016/j.bbamem.2013.04.012
            73.  Hiller T, Berg J, Elomaa L, et al. Generation of a 3D liver   84.  Yankner BA, Duffy LK, Kirschner DA. Neurotrophic
               model comprising human extracellular matrix in an alginate/  and neurotoxic effects of amyloid beta protein: reversal
               gelatin-based bioink by extrusion bioprinting for infection   by tachykinin neuropeptides.  Science (New York, NY).
               and transduction studies. Int J Mol Sci. 2018;19(10):3129.  1990;250(4978):279-282.
               doi: 10.3390/ijms19103129                          doi: 10.1126/science.2218531
            74.  Di Giuseppe M, Law N, Webb B, et al. Mechanical behaviour   85.  Mazur-Kolecka  B,  Golabek  A,  Nowicki  K,  Flory  M,
               of alginate-gelatin hydrogels for 3D bioprinting.  J Mech   Frackowiak J. Amyloid-beta impairs development of
               Behav Biomed Mater. 2018;79:150-157.               neuronal progenitor cells by oxidative mechanisms.
               doi: 10.1016/j.jmbbm.2017.12.018                   Neurobiol Aging. 2006;27(9):1181-1192.
            75.  Freeman  FE,  Kelly  DJJSr.  Tuning  alginate  bioink  stiffness      doi: 10.1016/j.neurobiolaging.2005.07.006
               and composition for controlled growth factor delivery and   86.  Wang X, Sun X, Gan D, et al. Bioadhesive and conductive
               to  spatially direct  MSC  fate  within  bioprinted  tissues.  Sci   hydrogel-integrated brain-machine interfaces for conformal
               Rep. 2017;7(1):17042.                              and immune-evasive contact with brain tissue.  Matter.
               doi: 10.1038/s41598-017-17286-1                    2022;5(4):1204-1223.
            76.  Chung JH, Naficy S, Yue Z, et al. Bio-ink properties and      doi: 10.1016/j.matt.2022.01.012
               printability for extrusion printing living cells. Biomater Sci.   87.  Pettikiriarachchi JTS, Parish CL, Shoichet MS, Forsythe JS,
               2013;1(7):763-773.                                 Nisbet DR. Biomaterials for brain tissue engineering. Aust J
               doi: 10.1039/C3BM00012E                            Chem. 2010;63(8):1143-1154.
            77.  Maihemuti A, Zhang H, Lin X, et al. 3D-printed fish gelatin      doi: 10.1071/CH10159
               scaffolds for cartilage tissue engineering.  J Bioact Mater.   88.  Sadeghi A, Afshari E, Hashemi M, Kaplan D, Mozafari M.
               2023;26:77-87.                                     Brainy biomaterials: latest advances in smart biomaterials to
               doi: 10.1016/j.bioactmat.2023.02.007               develop the next generation of neural interfaces. Curr Opin
            78.  Derkach SR, Voron’ko NG, Sokolan NI, Kolotova DS,   Biomed Eng. 2023;25:100420.
               Kuchina YA. Interactions between gelatin and sodium      doi: 10.1016/j.cobme.2022.100420
               alginate: UV and FTIR studies.  J Dispers Sci Technol.   89.  Bierman‐Duquette RD, Safarians G, Huang J, et al.
               2020;41(5):690-698.                                Engineering tissues of the central nervous system: interfacing
               doi: 10.1080/01932691.2019.1611437
                                                                  conductive biomaterials with neural stem/progenitor cells.
            79.  Costa HdS, Dias MR. Alginate/bioactive glass beads:   Adv Healthc Mater. 2022;11(7):2101577.
               synthesis, morphological  and  compositional changes      doi: 10.1002/adhm.202101577


            Volume 10 Issue 5 (2024)                       523                                doi: 10.36922/ijb.3751
   526   527   528   529   530   531   532   533   534   535   536