Page 529 - IJB-10-5
P. 529

International Journal of Bioprinting                          3D model of neurogenesis in Alzheimer’s disease




               parameters: A systematic approach.  Biofabrication.   33.  Li Z, Huang S, Liu Y, et al. Tuning alginate-gelatin bioink
               2018;10(3):034106.                                 properties by varying solvent and their impact on stem cell
               doi: 10.1088/1758-5090/aacdc7                      behavior. Sci Rep. 2018;8(1):8020.
                                                                  doi: 10.1038/s41598-018-26407-3
            22.  Ioannidis K, Angelopoulos I, Gakis G, et al. 3D reconstitution
               of the  neural  stem cell niche:  connecting the  dots.  Front   34.  Cheng L, Yao B, Hu T, et al. Properties of an alginate-gelatin-
               Bioeng Biotechnol. 2021;9:705470.                  based bioink and its potential impact on cell migration,
               doi: 10.3389/fbioe.2021.705470                     proliferation,  and  differentiation.  Int J Biol Macromol.
                                                                  2019;135:1107-1113.
            23.  Centeno  EGZ,  Cimarosti  H,  Bithell  A.  2D  versus  3D
               human induced pluripotent stem cell-derived cultures for      doi: 10.1016/j.ijbiomac.2019.06.017
               neurodegenerative disease modelling.  Mol Neurodegener.   35.  Giuseppe MD, Law N, Webb B, et al. Mechanical behaviour
               2018;13:1-15.                                      of alginate-gelatin hydrogels for 3D bioprinting.  J Mech
               doi: 10.1186/s13024-018-0258-4                     Behav Biomed Mater. 2018;79:150-157.
                                                                  doi: 10.1016/j.jmbbm.2017.12.018
            24.  Ioannidis K, Danalatos RI, Champeris Tsaniras S, et al. A
               custom ultra-low-cost 3D bioprinter supports cell growth   36.  Łabowska MB, Cierluk K, Jankowska AM, Kulbacka J,
               and differentiation. Front Bioeng Biotechnol. 2020;8:580889.  Detyna J, Michalak I. A review on the adaption of alginate-
               doi: 10.3389/fbioe.2020.580889                     gelatin hydrogels for 3D cultures and bioprinting. Materials
                                                                  (Basel, Switzerland). 2021;14(4):858.
            25.  Benwood C, Walters-Shumka J, Scheck K, Willerth SM.
               3D bioprinting patient-derived induced pluripotent stem      doi: 10.3390/ma14040858
               cell models of Alzheimer’s disease using a smart bioink.   37.  Morgan C, Inestrosa NC. Interactions of laminin with the
               Bioelectron Med. 2023;9(1):10.                     amyloid ß peptide: implications for Alzheimer’s disease.
               doi: 10.1186/s42234-023-00112-7                    Braz J Med Biol Res. 2001;34:597-601.
                                                                  doi: 10.1590/S0100-879X2001000500006
            26.  Bovi dos Santos G, de Lima-Vasconcellos TH, Móvio MI,
               Birbrair A, Del Debbio CB, Kihara AH. New perspectives   38.  Bronfman FC, Garrido J, Alvarez A, Morgan C, Inestrosa
               in stem cell transplantation and associated therapies to treat   NC. Laminin inhibits amyloid-beta-peptide fibrillation.
               retinal diseases: from gene editing to 3D bioprinting. Stem   Neurosci Lett. 1996;218(3):201-203.
               Cell Rev Rep. 2024;20(3):722-737.                  doi: 10.1016/s0304-3940(96)13147-5
               doi: 10.1007/s12015-024-10689-4
                                                               39.  Rodin S, Kozin SA, Kechko OI, Mitkevich VA, Makarov
            27.  Romariz  SAA, Sanabria  V, da  Silva KR, et al. High   AA.  Aberrant  interactions  between  amyloid-beta
               concentrations of cannabidiol induce neurotoxicity   and  alpha5  laminins  as  possible  driver  of  neuronal
               in neurosphere culture system.  Neurotox  Res. 2024;   disfunction in Alzheimer’s disease.  Biochimie. 2020;174:
               42(1):14.                                          44-48.
               doi: 10.1007/s12640-024-00692-5                    doi: 10.1016/j.biochi.2020.04.011
            28.  Fantini V, Bordoni M, Scocozza F, et al. Bioink composition   40.  Zhang  Z,  Wang  J,  Song  Y,  Wang  Z,  Dong  M,  Liu  L.
               and  printing  parameters  for  3D  modeling  neural  tissue.   Disassembly of Alzheimer’s amyloid fibrils by functional
               Cells. 2019;8(8):830.                              upconversion nanoparticles under near-infrared light
               doi: 10.3390/cells8080830                          irradiation.  Colloids Surf B Biointerfaces.  2019;181:
                                                                  341-348.
            29.  Zhou X, Cui H, Nowicki M, et al. Three-dimensional-bioprinted
               dopamine-based matrix for promoting neural regeneration.      doi: 10.1016/j.colsurfb.2019.05.053
               ACS Appl Mater Interfaces. 2018;10(10):8993-9001.  41.  Almenar-Queralt A, Falzone TL, Shen Z, et al. UV
               doi: 10.1021/acsami.7b18197                        irradiation accelerates amyloid precursor protein (APP)
                                                                  processing and disrupts APP axonal transport. J Neurosci.
            30.  Joung D, Truong V, Neitzke CC, et al. 3D printed stem-cell
               derived neural progenitors generate spinal cord scaffolds.   2014;34(9):3320-3339.
               Adv Funct Mater. 2018;28(39):1801850.              doi: 10.1523/jneurosci.1503-13.2014
               doi: 10.1002/adfm.201801850                     42.  Measey TJ, Gai  F. Light-triggered disassembly of amyloid
                                                                  fibrils. Langmuir. 2012;28(34):12588-12592.
            31.  Suslov ON, Kukekov VG, Ignatova TN, Steindler DA.
               Neural stem cell heterogeneity demonstrated by molecular      doi: 10.1021/la302626d
               phenotyping of clonal neurospheres.  Proc Natl Acad Sci   43.  Gómez-Guillén MC, Giménez B, López-Caballero MEa,
               USA. 2002;99(22):14506-14511.                      Montero MP.  Functional and bioactive properties of
               doi: 10.1073/pnas.212525299                        collagen and gelatin from alternative sources: a review. Food
                                                                  Hydrocolloids. 2011;25(8):1813-1827.
            32.  Othman SA, Soon CF, Ma NL, et al. Alginate-gelatin bioink
               for bioprinting of hela spheroids in alginate-gelatin hexagon      doi: 10.1016/j.foodhyd.2011.02.007
               shaped scaffolds. Polym Bull. 2021;78:6115-6135.  44.  Mancha Sánchez E, Gómez-Blanco JC, López Nieto E, et al.
               doi: 10.1007/s00289-020-03421-y                    Hydrogels for bioprinting: a systematic review of hydrogels

            Volume 10 Issue 5 (2024)                       521                                doi: 10.36922/ijb.3751
   524   525   526   527   528   529   530   531   532   533   534