Page 529 - IJB-10-5
P. 529
International Journal of Bioprinting 3D model of neurogenesis in Alzheimer’s disease
parameters: A systematic approach. Biofabrication. 33. Li Z, Huang S, Liu Y, et al. Tuning alginate-gelatin bioink
2018;10(3):034106. properties by varying solvent and their impact on stem cell
doi: 10.1088/1758-5090/aacdc7 behavior. Sci Rep. 2018;8(1):8020.
doi: 10.1038/s41598-018-26407-3
22. Ioannidis K, Angelopoulos I, Gakis G, et al. 3D reconstitution
of the neural stem cell niche: connecting the dots. Front 34. Cheng L, Yao B, Hu T, et al. Properties of an alginate-gelatin-
Bioeng Biotechnol. 2021;9:705470. based bioink and its potential impact on cell migration,
doi: 10.3389/fbioe.2021.705470 proliferation, and differentiation. Int J Biol Macromol.
2019;135:1107-1113.
23. Centeno EGZ, Cimarosti H, Bithell A. 2D versus 3D
human induced pluripotent stem cell-derived cultures for doi: 10.1016/j.ijbiomac.2019.06.017
neurodegenerative disease modelling. Mol Neurodegener. 35. Giuseppe MD, Law N, Webb B, et al. Mechanical behaviour
2018;13:1-15. of alginate-gelatin hydrogels for 3D bioprinting. J Mech
doi: 10.1186/s13024-018-0258-4 Behav Biomed Mater. 2018;79:150-157.
doi: 10.1016/j.jmbbm.2017.12.018
24. Ioannidis K, Danalatos RI, Champeris Tsaniras S, et al. A
custom ultra-low-cost 3D bioprinter supports cell growth 36. Łabowska MB, Cierluk K, Jankowska AM, Kulbacka J,
and differentiation. Front Bioeng Biotechnol. 2020;8:580889. Detyna J, Michalak I. A review on the adaption of alginate-
doi: 10.3389/fbioe.2020.580889 gelatin hydrogels for 3D cultures and bioprinting. Materials
(Basel, Switzerland). 2021;14(4):858.
25. Benwood C, Walters-Shumka J, Scheck K, Willerth SM.
3D bioprinting patient-derived induced pluripotent stem doi: 10.3390/ma14040858
cell models of Alzheimer’s disease using a smart bioink. 37. Morgan C, Inestrosa NC. Interactions of laminin with the
Bioelectron Med. 2023;9(1):10. amyloid ß peptide: implications for Alzheimer’s disease.
doi: 10.1186/s42234-023-00112-7 Braz J Med Biol Res. 2001;34:597-601.
doi: 10.1590/S0100-879X2001000500006
26. Bovi dos Santos G, de Lima-Vasconcellos TH, Móvio MI,
Birbrair A, Del Debbio CB, Kihara AH. New perspectives 38. Bronfman FC, Garrido J, Alvarez A, Morgan C, Inestrosa
in stem cell transplantation and associated therapies to treat NC. Laminin inhibits amyloid-beta-peptide fibrillation.
retinal diseases: from gene editing to 3D bioprinting. Stem Neurosci Lett. 1996;218(3):201-203.
Cell Rev Rep. 2024;20(3):722-737. doi: 10.1016/s0304-3940(96)13147-5
doi: 10.1007/s12015-024-10689-4
39. Rodin S, Kozin SA, Kechko OI, Mitkevich VA, Makarov
27. Romariz SAA, Sanabria V, da Silva KR, et al. High AA. Aberrant interactions between amyloid-beta
concentrations of cannabidiol induce neurotoxicity and alpha5 laminins as possible driver of neuronal
in neurosphere culture system. Neurotox Res. 2024; disfunction in Alzheimer’s disease. Biochimie. 2020;174:
42(1):14. 44-48.
doi: 10.1007/s12640-024-00692-5 doi: 10.1016/j.biochi.2020.04.011
28. Fantini V, Bordoni M, Scocozza F, et al. Bioink composition 40. Zhang Z, Wang J, Song Y, Wang Z, Dong M, Liu L.
and printing parameters for 3D modeling neural tissue. Disassembly of Alzheimer’s amyloid fibrils by functional
Cells. 2019;8(8):830. upconversion nanoparticles under near-infrared light
doi: 10.3390/cells8080830 irradiation. Colloids Surf B Biointerfaces. 2019;181:
341-348.
29. Zhou X, Cui H, Nowicki M, et al. Three-dimensional-bioprinted
dopamine-based matrix for promoting neural regeneration. doi: 10.1016/j.colsurfb.2019.05.053
ACS Appl Mater Interfaces. 2018;10(10):8993-9001. 41. Almenar-Queralt A, Falzone TL, Shen Z, et al. UV
doi: 10.1021/acsami.7b18197 irradiation accelerates amyloid precursor protein (APP)
processing and disrupts APP axonal transport. J Neurosci.
30. Joung D, Truong V, Neitzke CC, et al. 3D printed stem-cell
derived neural progenitors generate spinal cord scaffolds. 2014;34(9):3320-3339.
Adv Funct Mater. 2018;28(39):1801850. doi: 10.1523/jneurosci.1503-13.2014
doi: 10.1002/adfm.201801850 42. Measey TJ, Gai F. Light-triggered disassembly of amyloid
fibrils. Langmuir. 2012;28(34):12588-12592.
31. Suslov ON, Kukekov VG, Ignatova TN, Steindler DA.
Neural stem cell heterogeneity demonstrated by molecular doi: 10.1021/la302626d
phenotyping of clonal neurospheres. Proc Natl Acad Sci 43. Gómez-Guillén MC, Giménez B, López-Caballero MEa,
USA. 2002;99(22):14506-14511. Montero MP. Functional and bioactive properties of
doi: 10.1073/pnas.212525299 collagen and gelatin from alternative sources: a review. Food
Hydrocolloids. 2011;25(8):1813-1827.
32. Othman SA, Soon CF, Ma NL, et al. Alginate-gelatin bioink
for bioprinting of hela spheroids in alginate-gelatin hexagon doi: 10.1016/j.foodhyd.2011.02.007
shaped scaffolds. Polym Bull. 2021;78:6115-6135. 44. Mancha Sánchez E, Gómez-Blanco JC, López Nieto E, et al.
doi: 10.1007/s00289-020-03421-y Hydrogels for bioprinting: a systematic review of hydrogels
Volume 10 Issue 5 (2024) 521 doi: 10.36922/ijb.3751

