Page 530 - IJB-10-5
P. 530
International Journal of Bioprinting 3D model of neurogenesis in Alzheimer’s disease
synthesis, bioprinting parameters, and bioprinted structures 56. Cooke ME, Rosenzweig DH. The rheology of direct
behavior. Front Bioeng Biotechnol. 2020;8:776. and suspended extrusion bioprinting. APL Bioeng.
doi: 10.3389/fbioe.2020.00776 2021;5(1):011502.
doi: 10.1063/5.0031475
45. Lee KY, Mooney DJ. Alginate: properties and biomedical
applications. Prog Polym Sci. 2012;37(1):106-126. 57. Chimene D, Kaunas R, Gaharwar AK. Hydrogel bioink
doi: 10.1016/j.progpolymsci.2011.06.003 reinforcement for additive manufacturing: a focused review
of emerging strategies. Adv Mater. 2020;32(1):e1902026.
46. Ishiwata R, Iwasa M. Cellular inertia. Sci Rep.
2021;11(1):23799. doi: 10.1002/adma.201902026
doi: 10.1038/s41598-021-02384-y 58. Mancha Sánchez E, Gómez-Blanco JC, López Nieto E, et al.
Hydrogels for bioprinting: a systematic review of hydrogels
47. Derkach SR, Voron’ko NG, Kuchina YA, Kolotova DS.
Modified fish gelatin as an alternative to mammalian gelatin synthesis, bioprinting parameters, and bioprinted structures
in modern food technologies. Polymers. 2020;12(12):3051. behavior. Front Bioeng Biotechnol. 2020;8:776.
doi: 10.3390/polym12123051 doi: 10.3389/fbioe.2020.00776
59. O’Connell C, Ren J, Pope L, et al. Characterizing bioinks for
48. Kokol V, Pottathara YB, Mihelčič M, Perše LS. Rheological
properties of gelatine hydrogels affected by flow-and extrusion bioprinting: printability and rheology. Methods
horizontally-induced cooling rates during 3D cryo-printing. Mol Biol. 2020;2140:111-133.
Colloids Surf A Physicochem Eng Asp. 2021;616:126356. doi: 10.1007/978-1-0716-0520-2_7
doi: 10.1016/j.colsurfa.2021.126356 60. Semba JA, Mieloch AA, Tomaszewska E, Cywoniuk P, Rybka
JD. Formulation and evaluation of a bioink composed of
49. Liu S, Yang H, Chen D, et al. Three-dimensional bioprinting
sodium alginate/gelatin scaffold combined with neural alginate, gelatin, and nanocellulose for meniscal tissue
stem cells and oligodendrocytes markedly promoting engineering. Int J Bioprint. 2023;9(1):621.
nerve regeneration after spinal cord injury. Regen Biomater. doi: 10.18063/ijb.v9i1.621
2022;9:rbac038. 61. Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J.
doi: 10.1093/rb/rbac038 Printability and shape fidelity of bioinks in 3D bioprinting.
Chem Rev. 2020;120(19):11028-11055.
50. Kaliampakou C, Lagopati N, Pavlatou EA, Charitidis CA.
Alginate–gelatin hydrogel scaffolds; an optimization of post- doi: 10.1021/acs.chemrev.0c00084
printing treatment for enhanced degradation and swelling 62. Cui R, Li S, Li T, et al. Natural polymer derived hydrogel
behavior. Gels. 2023;9(11):857. bioink with enhanced thixotropy improves printability and
doi: 10.3390/gels9110857 cellular preservation in 3D bioprinting. J Mater Chem B.
2023;11(17):3907-3918.
51. Freeman FE, Kelly DJ. Tuning alginate bioink stiffness and
composition for controlled growth factor delivery and to doi: 10.1039/D2TB02786K
spatially direct MSC fate within bioprinted tissues. Sci Rep. 63. Mouser VH, Melchels FP, Visser J, Dhert WJ, Gawlitta D,
2017;7(1):17042. Malda J. Yield stress determines bioprintability of hydrogels
doi: 10.1038/s41598-017-17286-1 based on gelatin-methacryloyl and gellan gum for cartilage
bioprinting. Biofabrication. 2016;8(3):035003.
52. Chung JHY, Naficy S, Yue Z, et al. Bio-ink properties and
printability for extrusion printing living cells. Biomater Sci. doi: 10.1088/1758-5090/8/3/035003
2013;1(7):763-773. 64. Venkata Krishna D, Ravi Sankar M. Persuasive factors on
doi: 10.1039/C3BM00012E the bioink printability and cell viability in the extrusion-
based 3D bioprinting for tissue regeneration applications.
53. Sonaye SY, Ertugral EG, Kothapalli CR, Sikder P. Extrusion
3D (bio) printing of alginate-gelatin-based composite Eng Regener. 2023;4(4):396-410.
scaffolds for skeletal muscle tissue engineering. Materials. doi: 10.1016/j.engreg.2023.07.002
2022;15(22):7945. 65. Herrada-Manchón H, Fernández MA, Aguilar E. Essential
doi: 10.3390/ma15227945 guide to hydrogel rheology in extrusion 3D printing: how to
measure it and why it matters? Gels. 2023;9(7):517.
54. Hazur J, Detsch R, Karakaya E, et al. Improving alginate
printability for biofabrication: establishment of a doi: 10.3390/gels9070517
universal and homogeneous pre-crosslinking technique. 66. Tuladhar S, Clark S, Habib A. Tuning shear thinning factors
Biofabrication. 2020;12(4):045004. of 3D bio-printable hydrogels using short fiber. Materials
doi: 10.1088/1758-5090/ab98e5 (Basel, Switzerland). 2023;16(2):572.
doi: 10.3390/ma16020572
55. Kim J, Choi YJ, Gal CW, Sung A, Park H, Yun HS.
142Development of an alginate-gelatin bioink enhancing 67. Malektaj H, Drozdov AD, deClaville Christiansen JJP.
osteogenic differentiation by gelatin release. Int J Bioprint. Mechanical properties of alginate hydrogels cross-linked
2023;9(2):660. with multivalent cations. Polymers (Basel). 2023;15(14):3012.
doi: 10.18063/ijb.v9i2.660 doi: 10.3390/polym15143012
Volume 10 Issue 5 (2024) 522 doi: 10.36922/ijb.3751

