Page 530 - IJB-10-5
P. 530

International Journal of Bioprinting                          3D model of neurogenesis in Alzheimer’s disease




               synthesis, bioprinting parameters, and bioprinted structures   56.  Cooke ME, Rosenzweig DH. The rheology of direct
               behavior. Front Bioeng Biotechnol. 2020;8:776.     and suspended extrusion bioprinting.  APL Bioeng.
               doi: 10.3389/fbioe.2020.00776                      2021;5(1):011502.
                                                                  doi: 10.1063/5.0031475
            45.  Lee KY, Mooney DJ. Alginate: properties and biomedical
               applications. Prog Polym Sci. 2012;37(1):106-126.  57.  Chimene D, Kaunas R, Gaharwar AK. Hydrogel bioink
               doi: 10.1016/j.progpolymsci.2011.06.003            reinforcement for additive manufacturing: a focused review
                                                                  of emerging strategies. Adv Mater. 2020;32(1):e1902026.
            46.  Ishiwata R, Iwasa M. Cellular inertia.  Sci  Rep.
               2021;11(1):23799.                                  doi: 10.1002/adma.201902026
               doi: 10.1038/s41598-021-02384-y                 58.  Mancha Sánchez E, Gómez-Blanco JC, López Nieto E, et al.
                                                                  Hydrogels for bioprinting: a systematic review of hydrogels
            47.  Derkach SR, Voron’ko NG, Kuchina YA, Kolotova DS.
               Modified fish gelatin as an alternative to mammalian gelatin   synthesis, bioprinting parameters, and bioprinted structures
               in modern food technologies. Polymers. 2020;12(12):3051.  behavior. Front Bioeng Biotechnol. 2020;8:776.
               doi: 10.3390/polym12123051                         doi: 10.3389/fbioe.2020.00776
                                                               59.  O’Connell C, Ren J, Pope L, et al. Characterizing bioinks for
            48.  Kokol V, Pottathara YB, Mihelčič M, Perše LS. Rheological
               properties  of  gelatine  hydrogels  affected  by  flow-and   extrusion bioprinting: printability and rheology.  Methods
               horizontally-induced cooling rates during 3D cryo-printing.   Mol Biol. 2020;2140:111-133.
               Colloids Surf A Physicochem Eng Asp. 2021;616:126356.     doi: 10.1007/978-1-0716-0520-2_7
               doi: 10.1016/j.colsurfa.2021.126356             60.  Semba JA, Mieloch AA, Tomaszewska E, Cywoniuk P, Rybka
                                                                  JD. Formulation and evaluation of a bioink composed of
            49.  Liu S, Yang H, Chen D, et al. Three-dimensional bioprinting
               sodium alginate/gelatin scaffold combined with neural   alginate, gelatin, and nanocellulose for meniscal tissue
               stem cells and oligodendrocytes markedly promoting   engineering. Int J Bioprint. 2023;9(1):621.
               nerve regeneration after spinal cord injury. Regen Biomater.      doi: 10.18063/ijb.v9i1.621
               2022;9:rbac038.                                 61.  Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J.
               doi: 10.1093/rb/rbac038                            Printability and shape fidelity of bioinks in 3D bioprinting.
                                                                  Chem Rev. 2020;120(19):11028-11055.
            50.  Kaliampakou C, Lagopati N, Pavlatou EA, Charitidis CA.
               Alginate–gelatin hydrogel scaffolds; an optimization of post-     doi: 10.1021/acs.chemrev.0c00084
               printing treatment for enhanced degradation and swelling   62.  Cui R, Li S, Li T, et al. Natural polymer derived hydrogel
               behavior. Gels. 2023;9(11):857.                    bioink with enhanced thixotropy improves printability and
               doi: 10.3390/gels9110857                           cellular preservation  in 3D  bioprinting.  J Mater Chem B.
                                                                  2023;11(17):3907-3918.
            51.  Freeman FE, Kelly DJ. Tuning alginate bioink stiffness and
               composition for controlled growth factor delivery and to      doi: 10.1039/D2TB02786K
               spatially direct MSC fate within bioprinted tissues. Sci Rep.   63.  Mouser VH, Melchels FP, Visser J, Dhert WJ, Gawlitta D,
               2017;7(1):17042.                                   Malda J. Yield stress determines bioprintability of hydrogels
               doi: 10.1038/s41598-017-17286-1                    based on gelatin-methacryloyl and gellan gum for cartilage
                                                                  bioprinting. Biofabrication. 2016;8(3):035003.
            52.  Chung JHY, Naficy S, Yue Z, et al. Bio-ink properties and
               printability for extrusion printing living cells. Biomater Sci.      doi: 10.1088/1758-5090/8/3/035003
               2013;1(7):763-773.                              64.  Venkata Krishna D, Ravi Sankar M. Persuasive factors on
               doi: 10.1039/C3BM00012E                            the bioink printability and cell viability in the extrusion-
                                                                  based 3D bioprinting for tissue regeneration applications.
            53.  Sonaye SY, Ertugral EG, Kothapalli CR, Sikder P. Extrusion
               3D (bio) printing of alginate-gelatin-based composite   Eng Regener. 2023;4(4):396-410.
               scaffolds for skeletal muscle tissue engineering.  Materials.      doi: 10.1016/j.engreg.2023.07.002
               2022;15(22):7945.                               65.  Herrada-Manchón H, Fernández MA, Aguilar E. Essential
               doi: 10.3390/ma15227945                            guide to hydrogel rheology in extrusion 3D printing: how to
                                                                  measure it and why it matters? Gels. 2023;9(7):517.
            54.  Hazur J, Detsch R, Karakaya E, et al.  Improving alginate
               printability for biofabrication: establishment of a      doi: 10.3390/gels9070517
               universal and homogeneous pre-crosslinking technique.   66.  Tuladhar S, Clark S, Habib A. Tuning shear thinning factors
               Biofabrication. 2020;12(4):045004.                 of 3D bio-printable hydrogels using short fiber.  Materials
               doi: 10.1088/1758-5090/ab98e5                      (Basel, Switzerland). 2023;16(2):572.
                                                                  doi: 10.3390/ma16020572
            55.  Kim J, Choi YJ, Gal CW, Sung A, Park H, Yun HS.
               142Development of an alginate-gelatin bioink enhancing   67.  Malektaj H, Drozdov AD, deClaville Christiansen JJP.
               osteogenic differentiation by gelatin release. Int J Bioprint.   Mechanical properties of alginate hydrogels cross-linked
               2023;9(2):660.                                     with multivalent cations. Polymers (Basel). 2023;15(14):3012.
               doi: 10.18063/ijb.v9i2.660                         doi: 10.3390/polym15143012

            Volume 10 Issue 5 (2024)                       522                                doi: 10.36922/ijb.3751
   525   526   527   528   529   530   531   532   533   534   535