Page 54 - IJB-10-5
P. 54

International Journal of Bioprinting                              Bioprinted tumor immune microenvironment




            94.  Ayan  B,  Heo  DN,  Zhang  Z,  et  al.  Aspiration-assisted   102. Terren I, Orrantia A, Vitalle J, et al. NK cell metabolism and
               bioprinting for precise positioning of biologics.  Sci Adv.   tumor microenvironment. Front Immunol. 2019;10:2278.
               2020;6(10):eaaw5111.                               doi: 10.3389/fimmu.2019.02278
               doi: 10.1126/sciadv.aaw5111
                                                               103. Kankeu  Fonkoua LA,  Sirpilla  O, Sakemura  R, et al. CAR
            95.  Cao X, Ashfaq R, Cheng F, et al. A tumor‐on‐a‐chip system   T cell therapy and the tumor microenvironment: current
               with bioprinted blood and lymphatic vessel pair. Adv Funct   challenges and opportunities.  Mol Ther Oncolytics.
               Mater. 2019;29(31):1807173.                        2022;25:69-77.
               doi: 10.1002/adfm.201807173                        doi:  10.1016/j.omto.2022.03.009
            96.  Dey M, Kim MH, Dogan M, et al. Chemotherapeutics and   104. Grunewald L, Lam T, Andersch L, et al. A reproducible
               CAR‐T cell‐based immunotherapeutics screening on a 3D   bioprinted 3D tumor model serves as a preselection tool
               bioprinted vascularized breast tumor model.  Adv Funct   for CAR T cell therapy optimization.  Front Immunol.
               Mater. 2022;32(52):2203966.                        2021;12:689697.
               doi: 10.1002/adfm.202203966                        doi: 10.3389/fimmu.2021.689697
            97.  Kim  JH,  Lee  S, Kang  SJ,  et  al.  Establishment  of  three-  105. Nguyen DT, Ogando-Rivas E, Liu R, et al. CAR T cell
               dimensional bioprinted bladder cancer-on-a-chip with   locomotion in solid tumor microenvironment.  Cells.
               a microfluidic system using Bacillus Calmette–Guérin.    2022;11(12):1974.
               Int J Mol Sci. 2021;22(16):8887.                   doi: 10.3390/cells11121974
               doi: 10.3390/ijms22168887                       106. Morse MA, Gwin III WR, Mitchell DA. Vaccine therapies
            98.  Goodarzi Hosseinabadi H, Dogan E, Miri AK, Ionov L.   for cancer: then and now. Target Oncol. 2021;16(2):121-152.
               Digital light processing bioprinting advances for microtissue      doi: 10.1007/s11523-020-00788-w
               models. ACS Biomater Sci Eng. 2022;8(4):1381-1395.  107  Langer EM, Allen-Petersen BL, King SM, et al. Modeling
               doi: 10.1021/acsbiomaterials.1c01509               tumor phenotypes in vitro with three-dimensional
            99.  El-Gamal MI, Al-Ameen SK, Al-Koumi DM, et al. Recent   bioprinting. Cell Rep. 2019;26(3):608-623. e6.
               advances of colony-stimulating factor-1 receptor (CSF-     doi: 10.1016/j.celrep.2018.12.090
               1R)  kinase  and  its  inhibitors.  J  Med  Chem.  2018;61(13):   108. Huang Y, Wang S, Guo Q, et al. Optical coherence
               5450-5466.                                         tomography detects necrotic regions and volumetrically
               doi: 10.1021/acs.jmedchem.7b00873                  quantifies  multicellular  tumor  spheroids.  Cancer Res.
            100. Binnemars‐Postma K, Bansal R, Storm G, Prakash   2017;77(21):6011-6020.
               J. Targeting the Stat6 pathway in tumor‐associated      doi: 10.1158/0008-5472.CAN-17-0821
               macrophages reduces  tumor growth and metastatic   109. Park J, Park B, Kim TY, et al. Quadruple ultrasound,
               niche formation in breast cancer.  FASEB J.  2018;32(2):   photoacoustic, optical coherence, and fluorescence fusion
               969-978.                                           imaging with a transparent ultrasound transducer. Proc Natl
               doi: 10.1096/fj.201700629R                         Acad Sci U S A. 2021;118(11):e1920879118.
            101. Wang W, Wang X, Yang W, et al. A CTLA-4 blocking strategy      doi: 10.1073/pnas.1920879118
               based on Nanoboby in dendritic cell-stimulated cytokine-  110. Gao Q, Yang L, Lu M, et al. The artificial intelligence and
               induced killer cells enhances their anti-tumor effects. BMC   machine learning in lung cancer immunotherapy. J Hematol
               Cancer. 2021;21(1):1029.                           Oncol. 2023;16(1):55.
               doi: 10.1186/s12885-021-08732-5                    doi: 10.1186/s13045-023-01456-y























            Volume 10 Issue 5 (2024)                        46                                doi: 10.36922/ijb.3988
   49   50   51   52   53   54   55   56   57   58   59