Page 54 - IJB-10-5
P. 54
International Journal of Bioprinting Bioprinted tumor immune microenvironment
94. Ayan B, Heo DN, Zhang Z, et al. Aspiration-assisted 102. Terren I, Orrantia A, Vitalle J, et al. NK cell metabolism and
bioprinting for precise positioning of biologics. Sci Adv. tumor microenvironment. Front Immunol. 2019;10:2278.
2020;6(10):eaaw5111. doi: 10.3389/fimmu.2019.02278
doi: 10.1126/sciadv.aaw5111
103. Kankeu Fonkoua LA, Sirpilla O, Sakemura R, et al. CAR
95. Cao X, Ashfaq R, Cheng F, et al. A tumor‐on‐a‐chip system T cell therapy and the tumor microenvironment: current
with bioprinted blood and lymphatic vessel pair. Adv Funct challenges and opportunities. Mol Ther Oncolytics.
Mater. 2019;29(31):1807173. 2022;25:69-77.
doi: 10.1002/adfm.201807173 doi: 10.1016/j.omto.2022.03.009
96. Dey M, Kim MH, Dogan M, et al. Chemotherapeutics and 104. Grunewald L, Lam T, Andersch L, et al. A reproducible
CAR‐T cell‐based immunotherapeutics screening on a 3D bioprinted 3D tumor model serves as a preselection tool
bioprinted vascularized breast tumor model. Adv Funct for CAR T cell therapy optimization. Front Immunol.
Mater. 2022;32(52):2203966. 2021;12:689697.
doi: 10.1002/adfm.202203966 doi: 10.3389/fimmu.2021.689697
97. Kim JH, Lee S, Kang SJ, et al. Establishment of three- 105. Nguyen DT, Ogando-Rivas E, Liu R, et al. CAR T cell
dimensional bioprinted bladder cancer-on-a-chip with locomotion in solid tumor microenvironment. Cells.
a microfluidic system using Bacillus Calmette–Guérin. 2022;11(12):1974.
Int J Mol Sci. 2021;22(16):8887. doi: 10.3390/cells11121974
doi: 10.3390/ijms22168887 106. Morse MA, Gwin III WR, Mitchell DA. Vaccine therapies
98. Goodarzi Hosseinabadi H, Dogan E, Miri AK, Ionov L. for cancer: then and now. Target Oncol. 2021;16(2):121-152.
Digital light processing bioprinting advances for microtissue doi: 10.1007/s11523-020-00788-w
models. ACS Biomater Sci Eng. 2022;8(4):1381-1395. 107 Langer EM, Allen-Petersen BL, King SM, et al. Modeling
doi: 10.1021/acsbiomaterials.1c01509 tumor phenotypes in vitro with three-dimensional
99. El-Gamal MI, Al-Ameen SK, Al-Koumi DM, et al. Recent bioprinting. Cell Rep. 2019;26(3):608-623. e6.
advances of colony-stimulating factor-1 receptor (CSF- doi: 10.1016/j.celrep.2018.12.090
1R) kinase and its inhibitors. J Med Chem. 2018;61(13): 108. Huang Y, Wang S, Guo Q, et al. Optical coherence
5450-5466. tomography detects necrotic regions and volumetrically
doi: 10.1021/acs.jmedchem.7b00873 quantifies multicellular tumor spheroids. Cancer Res.
100. Binnemars‐Postma K, Bansal R, Storm G, Prakash 2017;77(21):6011-6020.
J. Targeting the Stat6 pathway in tumor‐associated doi: 10.1158/0008-5472.CAN-17-0821
macrophages reduces tumor growth and metastatic 109. Park J, Park B, Kim TY, et al. Quadruple ultrasound,
niche formation in breast cancer. FASEB J. 2018;32(2): photoacoustic, optical coherence, and fluorescence fusion
969-978. imaging with a transparent ultrasound transducer. Proc Natl
doi: 10.1096/fj.201700629R Acad Sci U S A. 2021;118(11):e1920879118.
101. Wang W, Wang X, Yang W, et al. A CTLA-4 blocking strategy doi: 10.1073/pnas.1920879118
based on Nanoboby in dendritic cell-stimulated cytokine- 110. Gao Q, Yang L, Lu M, et al. The artificial intelligence and
induced killer cells enhances their anti-tumor effects. BMC machine learning in lung cancer immunotherapy. J Hematol
Cancer. 2021;21(1):1029. Oncol. 2023;16(1):55.
doi: 10.1186/s12885-021-08732-5 doi: 10.1186/s13045-023-01456-y
Volume 10 Issue 5 (2024) 46 doi: 10.36922/ijb.3988

