Page 50 - IJB-10-5
P. 50
International Journal of Bioprinting Bioprinted tumor immune microenvironment
Acknowledgments 5 Staros R, Michalak A, Rusinek K, et al. Perspectives for
3D-bioprinting in modeling of tumor immune evasion.
None. Cancers. 2022;14(13):3126.
doi: 10.3390/cancers14133126
Funding
6 Parodi I, Di Lisa D, Pastorino L, et al. 3D bioprinting
This work was supported by the National Research as a powerful technique for recreating the tumor
Foundation (NRF) of Korea grants funded by the microenvironment. Gels. 2023;9(6):482.
Korea government (MSIT; No. RS-2023-00242443, doi: 10.3390/gels9060482
RS-2023-00218543). 7 Voskoglou-Nomikos T, Pater JL, Seymour L. Clinical
predictive value of the cell line, human xenograft, and
Conflict of interest mouse allograft preclinical cancer models. Clin Cancer Res.
2003;9(11):4227-4239.
The authors declare they have no competing interests.
8 González-Callejo P, García-Astrain C, Herrero-Ruiz A, et al.
Author contributions 3D bioprinted tumor-stroma models of triple-negative breast
cancer stem cells for preclinical targeted therapy evaluation.
Conceptualization: Sungsu Park ACS Appl Mater Interfaces. 2024;16(21):27151-27163.
Formal analysis: Sein Kim doi: 10.1021/acsami.4c04135
Investigation: Jaehyun Lee, Chanyang Lee 9 Augustine R, Kalva SN, Ahmad R, et al. 3D bioprinted
Methodology: Seokgyu Han cancer models: revolutionizing personalized cancer therapy.
Writing–original draft: Sein Kim, Seokgyu Han Transl Oncol. 2021;14(4):101015.
Writing–review & editing: Sein Kim, Seokgyu Han, doi: 10.1016/j.tranon.2021.101015
Chanyang Lee, Sungsu Park
10 Zhu W, Holmes B, Glazer RI, Zhang LG. 3D printed
nanocomposite matrix for the study of breast cancer
Ethics approval and consent to participate bone metastasis. Nanomed Nanotechnol Biol Med. 2016;
Not applicable. 12(1):69-79.
doi: 10.1016/j.nano.2015.09.010
Consent for publication 11 Bae J, Han S, Park S. Recent advances in 3D bioprinted
tumor microenvironment. Biochip J. 2020;14:137-147.
Not applicable. doi: 10.1007/s13206-020-4201-8
Availability of data 12 Zhang YS, Duchamp M, Oklu R, et al. Bioprinting the cancer
microenvironment. ACS Biomater Sci Eng. 2016;2(10):
Not applicable. 1710-1721.
doi: 10.1021/acsbiomaterials.6b00246
References
13 Shukla P, Yeleswarapu S, Heinrich MA, et al. Mimicking
tumor microenvironment by 3D bioprinting: 3D cancer
1. Yaddanapudi K, Mitchell RA, Eaton JW. Cancer vaccines: modeling. Biofabrication. 2022;14(3):Article 032002.
looking to the future. Oncoimmunology. 2013;2(3):e23403. doi: 10.1088/1758-5090/ac6d11
doi: 10.4161/onci.23403
14 Monestime S, Lazaridis D. Pexidartinib (TURALIO): the
2. Flores-Torres S, Jiang T, Kort-Mascort J, et al. Constructing first FDA-indicated systemic treatment for tenosynovial
3D in vitro models of heterocellular solid tumors and giant cell tumor. Drugs R D. 2020;20(3):189-195.
stromal tissues using extrusion-based bioprinting. ACS doi: 10.1007/s40268-020-00314-3
Biomater Sci Eng. 2023;9(2):542-561.
doi: 10.1021/acsbiomaterials.2c00998 15 Pardoll DM. The blockade of immune checkpoints in cancer
immunotherapy. Nat Rev Cancer. 2012;12(4):252-264.
3. Zhou Z, Pang Y, Ji J, et al. Harnessing 3D in vitro systems to doi: 10.1038/nrc3239
model immune responses to solid tumours: a step towards
improving and creating personalized immunotherapies. Nat 16 Topalian SL, Drake CG, Pardoll DM. Immune checkpoint
Rev Immunol. 2024;24(1):18-32. blockade: a common denominator approach to cancer
doi: 10.1038/s41577-023-00896-4 therapy. Cancer Cell. 2015;27(4):450-461.
doi: 10.1016/j.ccell.2015.03.001
4. Zhang Z, Chen X, Gao S, et al. 3D bioprinted tumor
model: a prompt and convenient platform for overcoming 17 June CH, O’Connor RS, Kawalekar OU, et al. CAR
immunotherapy resistance by recapitulating the tumor T cell immunotherapy for human cancer. Science.
microenvironment. Cell Oncol. 2024;47:1113-1126. 2018;359(6382):1361-1365.
doi: 10.1007/s13402-024-00935-9 doi: 10.1126/science.aar6711
Volume 10 Issue 5 (2024) 42 doi: 10.36922/ijb.3988

