Page 547 - IJB-10-5
P. 547
International Journal of Bioprinting Biomimetic scaffolds for mandibular repair
12. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros 24. Toosi S, Javid-Naderi MJ, Tamayol A, Ebrahimzadeh MH,
JP. Biphasic calcium phosphate bioceramics: preparation, Yaghoubian S, Mousavi Shaegh SA. Additively manufactured
properties and applications. J Mater Sci Mater Med. porous scaffolds by design for treatment of bone defects.
2003;14(3):201-209. Front Bioeng Biotechnol. 2023;11:1252636.
doi: 10.1023/A:1022872421333 doi: 10.3389/fbioe.2023.1252636
13. Ishack S, Mediero A, Wilder T, Ricci JL, Cronstein 25. Zhu H, Lin Z, Luan Q, et al. Angiogenesis-promoting
BN. Bone regeneration in critical bone defects using composite TPMS bone tissue engineering scaffold
three-dimensionally printed β-tricalcium phosphate/ for mandibular defect regeneration. Int J Bioprint.
hydroxyapatite scaffolds is enhanced by coating scaffolds 2023;10(1):0153.
with either dipyridamole or BMP-2. J Biomed Mater Res B doi: 10.36922/ijb.0153
Appl Biomater. 2017;105(2):366-375. 26. Thanasrisuebwong P, Kiattavorncharoen S, Deeb GR,
doi: 10.1002/jbm.b.33561
Bencharit S. Implant site preparation application of
14. Witek L, Shi Y, Smay J. Controlling calcium and phosphate injectable platelet-rich fibrin for vertical and horizontal
ion release of 3D printed bioactive ceramic scaffolds: an in bone regeneration: a clinical report. J Oral Implantol.
vitro study. J Adv Ceramics. 2017;6(2):157-164. 2022;48(1):43-50.
doi: 10.1007/s40145-017-0228-2 doi: 10.1563/aaid-joi-D-20-00031
15. Liu B, Lun DX. Current application of β-tricalcium 27. Chenchev IL, Ivanova VV, Neychev DZ, Cholakova RB.
phosphate composites in orthopaedics. Orthop Surg. Application of platelet-rich fibrin and injectable platelet-
2012;4(3):139-144. rich fibrin in combination of bone substitute material for
doi: 10.1111/j.1757-7861.2012.00189.x alveolar ridge augmentation – a case report. Folia Medica.
2017;59(3):362-366.
16. Fariña NM, Guzón FM, Peña ML, Cantalapiedra AG. In doi: 10.1515/folmed-2017-0044
vivo behaviour of two different biphasic ceramic implanted
in mandibular bone of dogs. J Mater Sci Mater Med. 28. Lorenz J, Al-Maawi S, Sader R, Ghanaati S. Individualized
2008;19(4):1565-1573. titanium mesh combined with platelet-rich fibrin
doi: 10.1007/s10856-008-3400-y and deproteinized bovine bone: a new approach for
challenging augmentation. J Oral Implantol. 2018;44(5):
17. Wang Y, Chen S, Liang H, Liu Y, Bai J, Wang M. Digital 345-351.
light processing (DLP) of nano biphasic calcium phosphate doi: 10.1563/aaid-joi-D-18-00049
bioceramic for making bone tissue engineering scaffolds.
Ceram Int. 2022;48(19, Part A):27681-27692. 29. Dong Y, Zhou X, Zhang N. CCN1 inhibition affects the
doi: 10.1016/j.ceramint.2022.06.067 function of endothelial progenitor cells under high-glucose
condition. Adv Clin Exp Med. 2024;33(6):619-631.
18. Chen Z, Li Z, Li J, et al. 3D printing of ceramics: a review. J doi: 10.17219/acem/170998
Euro Ceram Soc. 2019;39(4):661-687.
doi: 10.1016/j.jeurceramsoc.2018.11.013 30. Pan C, Hu T, Liu P, et al. BM-MSCs display altered gene
expression profiles in B-cell acute lymphoblastic leukemia
19. Melchels FPW, Feijen J, Grijpma DW. A review on niches and exert pro-proliferative effects via overexpression
stereolithography and its applications in biomedical of IFI6. J Transl Med. 2023;21(1):593.
engineering. Biomaterials 2010;31(24):6121-6130.
doi: 10.1016/j.biomaterials.2010.04.050 doi: 10.1186/s12967-023-04464-1
31. Gonçalves TL, de Araújo LP, Pereira Ferrer V. Tamoxifen
20. Zhang J, Hu Q, Wang S, Tao J, Gou M. Digital light processing as a modulator of CXCL12-CXCR4-CXCR7 chemokine
based three-dimensional printing for medical applications. axis: A breast cancer and glioblastoma view. Cytokine.
Int J Bioprint. 2020;6(1):242. 2023;170:156344.
doi: 10.18063/ijb.v6i1.242
doi: 10.1016/j.cyto.2023.156344
21. Monfared MH, Nemati A, Loghman F, et al. A deep insight
into the preparation of ceramic bone scaffolds utilizing 32. Olmo N, Martín AI, Salinas AJ, Turnay J, Vallet-Regí
M, Lizarbe MA. Bioactive sol–gel glasses with and
robocasting technique. Ceram Int. 2022;48(5):5939-5954. without a hydroxycarbonate apatite layer as substrates for
doi: 10.1016/j.ceramint.2021.11.268
osteoblast cell adhesion and proliferation. Biomaterials
22. Dong Z, Zhao X. Application of TPMS structure in bone 2003;24(20):3383-3393.
regeneration. Eng Regeneration. 2021;2:154-162. doi: 10.1016/S0142-9612(03)00200-X
doi: 10.1016/j.engreg.2021.09.004
33. Li Y, Dai X, Bai Y, et al. Electroactive BaTiO3
23. Shi J, Zhu L, Li L, Li Z, Yang J, Wang X. A TPMS-based nanoparticle-functionalized fibrous scaffolds enhance
method for modeling porous scaffolds for bionic bone tissue osteogenic differentiation of mesenchymal stem cells.
engineering. Sci Rep. 2018;8(1):7395. Int J Nanomedicine. 2017;12:4007-4018.
doi: 10.1038/s41598-018-25750-9 doi: 10.2147/IJN.S135605
Volume 10 Issue 5 (2024) 539 doi: 10.36922/ijb.4147

