Page 102 - IJB-6-2
P. 102

3D-printed borate glass scaffolds for bone repair
               Derived  from  Bone  Marrow  or  Adipose  Tissue  on  Bone   After Use of Recombinant Bone Morphogenetic Protein-2 for
               Regeneration  of  Rat  Calvarial  Defects.  Sci Rep,  9:13476.   Spinal Arthrodesis. J Bone Joint Surg Am, 95:1537–45. DOI:
               DOI: 10.1038/s41598-019-50067-6.                    10.1016/j.spinee.2013.11.026.
           42.  Gibson  LJ,  Ashby  MF,  1982,  The  Mechanics  of  Three-  54.  Injamuri  S,  Rahaman  MN,  Shen  Y,  et al.,  2020,  Relaxin
               Dimensional Cellular Materials. Proc R Soc A Math Phys Sci,   Enhances   Bone   Regeneration   with   BMP-2-Loaded
               382:43–59.                                          Hydroxyapatite Microspheres. J Biomed Mater Res Part A,
           43.  Ryshkewitch  E,  1953,  Compression  Strength  of  Porous   108:1231–42. DOI: 10.1002/jbm.a.36897.
               Sintered Alumina and Zirconia. J Am Ceram Soc, 36:65–8.  55.  Gu Y, Bal B, Rahaman N, et al., 2015, In Vivo Evaluation
           44.  Duckworth W, 1953, Discussion of Ryshkewitch Paper. J Am   of Scaffolds with a Grid-Like Microstructure Composed of a
               Ceram Soc, 36:68.                                   Mixture of Silicate (13-93) and Borate (13-93B3) Bioactive
           45.  Rice  RW,  1996,  Evaluation  and  Extension  of  Physical   Glasses. John Wiley and Sons, Inc., New York, pp. 53–64.
               Property-porosity  Models  Based  on  Minimum  Solid Area.   DOI: 10.1002/9781119040392.ch6.
               J Mater Sci, 31:102–18.                         56.  Karageorgiou V, Kaplan D, 2005, Porosity of 3D Biomaterial
           46.  Hattiangadi  A,  Bandyopadhyay  A,  2000,  Strength   Scaffolds and Osteogenesis. Biomaterials, 26:5474–91. DOI:
               Degradation of Nonrandom Porous Ceramic Structures under   10.1016/j.biomaterials.2005.02.002.
               Uniaxial Compressive Loading. J Am Ceram Soc, 83:2730–6.   57.  Sopyan I, Gunawan, 2013, Development of Porous Calcium
               DOI: 10.1111/j.1151-2916.2000.tb01624.x.            Phosphate  Bioceramics  for  Bone  Implant  Applications:
           47.  Rice RW, 1993, Comparison of Stress Concentration Versus   A  Review.  Recent Patents Mater Sci,  6:238–52.  DOI:
               Minimum  Solid  Area  Based  Mechanical  Property-porosity   10.2174/18744648113069990012.
               Relations. J Mater Sci, 28:2187–90. DOI: 10.1007/bf00367582.  58.  Gu  Y,  Huang  W,  Rahaman  MN,  et al.,  2013,  Bone
           48.  Deliormanl AM, 2012, In Vitro Assessment of Degradation   Regeneration  in  Rat  Calvarial  Defects  Implanted  with
               and  Bioactivity  of  Robocast  Bioactive  Glass  Scaffolds   Fibrous  Scaffolds  Composed  of  a  Mixture  of  Silicate  and
               in  Simulated  Body  Fluid.  Ceram Int,  38:6435–44.   Borate Bioactive Glasses. Acta Biomater, 9:9126–36. DOI:
               DOI: 10.1016/j.ceramint.2012.05.019.                10.1016/j.actbio.2013.06.039.
           49.  Deliormanli AM, Rahaman MN, 2012, Direct-write Assembly   59.  Bi L, Zobell B, Liu X, et al., 2014, Healing of Critical-size
               of  Silicate  and  Borate  Bioactive  Glass  Scaffolds  for  Bone   Segmental  Defects  in  Rat  Femora  Using  Strong  Porous
               Repair.  J  Eur Ceram  Soc,  32:3637–46.  DOI:  10.1016/j.  Bioactive Glass Scaffolds. Mater Sci Eng C, 42:816–24. DOI:
               jeurceramsoc.2012.05.005.                           10.1016/j.msec.2014.06.022.
           50.  Kolan  KC,  Semon  J,  Bromet  B,  et al.,  2019,  Bioprinting   60.  Wang H, Zhao S, Xiao W, et al., 2015, Three-dimensional
               with  Human  Stem  Cells-laden Alginate-gelatin  Bioink  and   Zinc  Incorporated  Borosilicate  Bioactive  Glass  Scaffolds
               Bioactive Glass for Tissue Engineering. Int J Bioprint, 5:3.   for  Rodent  Critical-sized  Calvarial  Defects  Repair  and
               DOI: 10.18063/ijb.v5i2.2.204.                       Regeneration.  Colloids Surfaces B Biointerfaces,  130:149–
           51.  Murphy  C,  Kolan  K,  Li  W,  et al.,  2017,  3D  Bioprinting   56. DOI: 10.1016/j.colsurfb.2015.03.053.
               of  Stem  Cells  and  Polymer/Bioactive  Glass  Composite   61.  Wang H, Zhao S, Zhou, J, et al., 2014, Evaluation of Borate
               Scaffolds for Tissue Engineering. Int J Bioprinting, 3:54–64.   Bioactive Glass Scaffolds as a Controlled Delivery System for
               DOI: 10.18063/ijb.2017.01.005.                      Copper Ions in Stimulating Osteogenesis and Angiogenesis
           52.  Hustedt JW, Blizzard DJ, 2018, The Controversy Surrounding   in Bone Healing. J Mater Chem B, 2:8547–57. DOI: 10.1039/
               Bone  Morphogenetic  Proteins  in  the  Spine:  A  Review  of   c4tb01355g.
               Current  Research.  In:  Getting  to  Good:  Research  Integrity   62.  Hart NH, Nimphius S, Rantalainen T, et al., 2017, Mechanical
               in the Biomedical Sciences. Vol. 87. Springer International   Basis  of  Bone  Strength:  Influence  of  Bone  Material,  Bone
               Publishing, Basel, Switzerland, pp. 9–22.           Structure  and  Muscle  Action.  J  Musculoskelet  Neuronal
           53.  Carragee EJ, Chu G, Rohatgi R, et al., 2013, Cancer Risk   Interact, 17:114–39.










           98                          International Journal of Bioprinting (2020)–Volume 6, Issue 2
   97   98   99   100   101   102   103   104   105   106   107