Page 101 - IJB-6-2
P. 101

Kolan, et al.
               DOI: 10.1016/j.progpolymsci.2019.101145.            Calvarial  Defects  Implanted  with  Strong  Porous  Bioactive
           17.  Sing SL, Yeong WY, Wiria FE, et al., 2017, Direct Selective   Glass (13-93) Scaffolds. J Non Cryst Solids, 432:4–13. DOI:
               Laser Sintering and Melting of Ceramics: A Review. Rapid   10.1016/j.jnoncrysol.2015.04.008.
               Prototyp J, 23:611–23. DOI: 10.1108/rpj-11-2015-0178.  30.  Bi  L,  Jung  S,  Day  D,  et  al.,  2012,  Evaluation  of  Bone
           18.  Datsiou  KC,  Saleh  E,  Spirrett  F,  et al.,  2019,  Additive   Regeneration, Angiogenesis, and Hydroxyapatite Conversion
               Manufacturing of Glass with Laser Powder Bed Fusion. J Am   in  Critical-sized  Rat  Calvarial  Defects  Implanted  with
               Ceram Soc, 102:4410–4. DOI: 10.1111/jace.16440.     Bioactive  Glass  Scaffolds.  J  Biomed Mater Res Part  A,
           19.  Yves-Christian H, et al., 2010, Net Shaped High Performance   100A:3267–75. DOI: 10.1002/jbm.a.34272.
               Oxide  Ceramic  Parts  by  Selective  Laser  Melting.  In:   31.  Bidan  CM,  Kommareddy  KP,  Rumpler  M,  et al.,  2013,
               Physics Procedia. Vol. 5. Elsevier B.V., Berlin, pp. 587–94.   Geometry  as  a  Factor  for  Tissue  Growth:  Towards  Shape
               DOI: 10.1016/j.phpro.2010.08.086.                   Optimization of Tissue Engineering Scaffolds. Adv Healthc
           20.  Verga F, Mario B, Laura C, et al., 2020, Laser-based Powder   Mater, 2:186–94. DOI: 10.1002/adhm.201200159.
               Bed Fusion of Alumina Toughened Zirconia. Addit Manuf,   32.  Bidan CM, Kommareddy KP, Rumpler M, et al., 2012, How
               31:100959. DOI: 10.1016/j.addma.2019.100959.        Linear Tension Converts to Curvature: Geometric Control of
           21.  Kolan KC, Leu MC, Hilmas GE, et al., 2011, Fabrication of   Bone Tissue Growth. PLoS One, 7:e36336. DOI: 10.1371/
               13-93 Bioactive Glass Scaffolds for Bone Tissue Engineering   journal.pone.0036336.
               Using  Indirect  Selective  Laser  Sintering.  Biofabrication,   33.  Rumpler M, Woesz A, Dunlop JW, et al., 2008, The Effect
               3:025004. DOI: 10.1088/1758-5082/3/2/025004.        of Geometry on Three-dimensional Tissue Growth. J R Soc
           22.  Goodridge RD, Dalgarno KW, Wood DJ, et al., 2006, Indirect   Interface, 5:1173–80.
               Selective  Laser  Sintering  of  an  Apatite-mullite  Glass-  34.  Kolan  KC,  Thomas  A,  Leu  MC,  et al.,  2015,  In Vitro
               Ceramic for Potential Use in Bone Replacement Applications.   Assessment of Laser Sintered Bioactive Glass Scaffolds with
               Proc Inst Mech Eng Part H J Eng Med, 220:57–68. DOI:   Different Pore Geometries. Rapid Prototyp J, 21:152–8. DOI:
               10.1243/095441105x69051.                            10.1108/rpj-12-2014-0175.
           23.  Van Bael S, Chai YC, Truscello S, et al., 2012, The Effect of   35.  Kolan  KC,  Leu  MC,  Hilmas  GE,  et  al.,  2012,  Effect
               Pore Geometry on the In Vitro Biological Behavior of Human   of  Material,  Process  Parameters,  and  Simulated  Body
               Periosteum-Derived Cells Seeded on Selective Laser-melted   Fluids  on  Mechanical  Properties  of  13-93  Bioactive  Glass
               Ti6Al4V Bone Scaffolds. Acta Biomater, 8:2824–34. DOI:   Porous  Constructs  Made  by  Selective  Laser  Sintering.
               10.1016/j.actbio.2012.04.001.                       J  Mech  Behav  Biomed  Mater,  13:14–24.  DOI:  10.1016/j.
           24.  Zadpoor AA, 2015, Bone Tissue Regeneration: The Role of   jmbbm.2012.04.001.
               Scaffold Geometry. Biomater Sci, 3:231–45. DOI: 10.1039/  36.  Kokubo  T,  Takadama  H,  2006,  How  Useful  is  SBF  in
               c4bm00291a.                                         Predicting In Vivo Bone Bioactivity? Biomaterials, 27:2907–
           25.  Ouyang  P,  Dong  H,  He  X,  et  al.,  2019,  Hydromechanical   15. DOI: 10.1016/j.biomaterials.2006.01.017.
               Mechanism behind the Effect of Pore Size of Porous Titanium   37.  Schindelin J, Arganda-Carreras I, Frise E, et al., 2012, Fiji:
               Scaffolds on Osteoblast Response and Bone Ingrowth. Mater   An Open-source Platform for Biological-image Analysis. Nat
               Des, 183:108151. doi.org/10.1016/j.matdes.2019.108151.  Methods, 9:676–82. DOI: 10.1038/nmeth.2019.
           26.  Gariboldi  MI,  Best  SM,  2015,  Effect  of  Ceramic  Scaffold   38.  Melchels FP, Barradas AM, van Blitterswijk CA, et al., 2010,
               Architectural  Parameters  on  Biological  Response.  Front   Effects of the Architecture of Tissue Engineering Scaffolds
               Bioeng Biotechnol, 3:151. DOI: 10.3389/fbioe.2015.00151.  on Cell Seeding and Culturing. Acta Biomater, 6:4208–17.
           27.  Roosa SM, Kemppainen JM, Moffitt EN, et al., 2010, The Pore   DOI: 10.1016/j.actbio.2010.06.012.
               Size of Polycaprolactone Scaffolds has Limited Influence on   39.  Carter DR, Hayes WC, 1976, Bone Compressive Strength:
               Bone Regeneration in an In Vivo Model. J Biomed Mater Res   The Influence of Density and Strain Rate. Science, 194:1174–
               Part A, 92:359–68. DOI: 10.1002/jbm.a.32381.        6. DOI: 10.1126/science.996549.
           28.  Perez  RA,  Mestres  G,  2016,  Role  of  Pore  Size  and   40.  Wu  D,  Isaksson  P,  Ferguson  SJ,  et al.,  2018,  Young’s
               Morphology in Musculo-skeletal Tissue Regeneration. Mater   Modulus of Trabecular Bone at the Tissue Level: A Review.
               Sci Eng C, 61:922–39. DOI: 10.1016/j.msec.2015.12.087.  Acta Biomater, 78:1–12. DOI: 10.1016/j.actbio.2018.08.001.
           29.  Lin  Y,  Liu  X,  Xiao  W,  et al.,  2015,  Long-term  Bone   41.  Freitas GP, Lopes HB, Souza AT, et al., 2019, Cell Therapy:
               Regeneration,  Mineralization  and  Angiogenesis  in  Rat   Effect  of  Locally  Injected  Mesenchymal  Stromal  Cells

                                       International Journal of Bioprinting (2020)–Volume 6, Issue 2        97
   96   97   98   99   100   101   102   103   104   105   106