Page 101 - IJB-6-2
P. 101
Kolan, et al.
DOI: 10.1016/j.progpolymsci.2019.101145. Calvarial Defects Implanted with Strong Porous Bioactive
17. Sing SL, Yeong WY, Wiria FE, et al., 2017, Direct Selective Glass (13-93) Scaffolds. J Non Cryst Solids, 432:4–13. DOI:
Laser Sintering and Melting of Ceramics: A Review. Rapid 10.1016/j.jnoncrysol.2015.04.008.
Prototyp J, 23:611–23. DOI: 10.1108/rpj-11-2015-0178. 30. Bi L, Jung S, Day D, et al., 2012, Evaluation of Bone
18. Datsiou KC, Saleh E, Spirrett F, et al., 2019, Additive Regeneration, Angiogenesis, and Hydroxyapatite Conversion
Manufacturing of Glass with Laser Powder Bed Fusion. J Am in Critical-sized Rat Calvarial Defects Implanted with
Ceram Soc, 102:4410–4. DOI: 10.1111/jace.16440. Bioactive Glass Scaffolds. J Biomed Mater Res Part A,
19. Yves-Christian H, et al., 2010, Net Shaped High Performance 100A:3267–75. DOI: 10.1002/jbm.a.34272.
Oxide Ceramic Parts by Selective Laser Melting. In: 31. Bidan CM, Kommareddy KP, Rumpler M, et al., 2013,
Physics Procedia. Vol. 5. Elsevier B.V., Berlin, pp. 587–94. Geometry as a Factor for Tissue Growth: Towards Shape
DOI: 10.1016/j.phpro.2010.08.086. Optimization of Tissue Engineering Scaffolds. Adv Healthc
20. Verga F, Mario B, Laura C, et al., 2020, Laser-based Powder Mater, 2:186–94. DOI: 10.1002/adhm.201200159.
Bed Fusion of Alumina Toughened Zirconia. Addit Manuf, 32. Bidan CM, Kommareddy KP, Rumpler M, et al., 2012, How
31:100959. DOI: 10.1016/j.addma.2019.100959. Linear Tension Converts to Curvature: Geometric Control of
21. Kolan KC, Leu MC, Hilmas GE, et al., 2011, Fabrication of Bone Tissue Growth. PLoS One, 7:e36336. DOI: 10.1371/
13-93 Bioactive Glass Scaffolds for Bone Tissue Engineering journal.pone.0036336.
Using Indirect Selective Laser Sintering. Biofabrication, 33. Rumpler M, Woesz A, Dunlop JW, et al., 2008, The Effect
3:025004. DOI: 10.1088/1758-5082/3/2/025004. of Geometry on Three-dimensional Tissue Growth. J R Soc
22. Goodridge RD, Dalgarno KW, Wood DJ, et al., 2006, Indirect Interface, 5:1173–80.
Selective Laser Sintering of an Apatite-mullite Glass- 34. Kolan KC, Thomas A, Leu MC, et al., 2015, In Vitro
Ceramic for Potential Use in Bone Replacement Applications. Assessment of Laser Sintered Bioactive Glass Scaffolds with
Proc Inst Mech Eng Part H J Eng Med, 220:57–68. DOI: Different Pore Geometries. Rapid Prototyp J, 21:152–8. DOI:
10.1243/095441105x69051. 10.1108/rpj-12-2014-0175.
23. Van Bael S, Chai YC, Truscello S, et al., 2012, The Effect of 35. Kolan KC, Leu MC, Hilmas GE, et al., 2012, Effect
Pore Geometry on the In Vitro Biological Behavior of Human of Material, Process Parameters, and Simulated Body
Periosteum-Derived Cells Seeded on Selective Laser-melted Fluids on Mechanical Properties of 13-93 Bioactive Glass
Ti6Al4V Bone Scaffolds. Acta Biomater, 8:2824–34. DOI: Porous Constructs Made by Selective Laser Sintering.
10.1016/j.actbio.2012.04.001. J Mech Behav Biomed Mater, 13:14–24. DOI: 10.1016/j.
24. Zadpoor AA, 2015, Bone Tissue Regeneration: The Role of jmbbm.2012.04.001.
Scaffold Geometry. Biomater Sci, 3:231–45. DOI: 10.1039/ 36. Kokubo T, Takadama H, 2006, How Useful is SBF in
c4bm00291a. Predicting In Vivo Bone Bioactivity? Biomaterials, 27:2907–
25. Ouyang P, Dong H, He X, et al., 2019, Hydromechanical 15. DOI: 10.1016/j.biomaterials.2006.01.017.
Mechanism behind the Effect of Pore Size of Porous Titanium 37. Schindelin J, Arganda-Carreras I, Frise E, et al., 2012, Fiji:
Scaffolds on Osteoblast Response and Bone Ingrowth. Mater An Open-source Platform for Biological-image Analysis. Nat
Des, 183:108151. doi.org/10.1016/j.matdes.2019.108151. Methods, 9:676–82. DOI: 10.1038/nmeth.2019.
26. Gariboldi MI, Best SM, 2015, Effect of Ceramic Scaffold 38. Melchels FP, Barradas AM, van Blitterswijk CA, et al., 2010,
Architectural Parameters on Biological Response. Front Effects of the Architecture of Tissue Engineering Scaffolds
Bioeng Biotechnol, 3:151. DOI: 10.3389/fbioe.2015.00151. on Cell Seeding and Culturing. Acta Biomater, 6:4208–17.
27. Roosa SM, Kemppainen JM, Moffitt EN, et al., 2010, The Pore DOI: 10.1016/j.actbio.2010.06.012.
Size of Polycaprolactone Scaffolds has Limited Influence on 39. Carter DR, Hayes WC, 1976, Bone Compressive Strength:
Bone Regeneration in an In Vivo Model. J Biomed Mater Res The Influence of Density and Strain Rate. Science, 194:1174–
Part A, 92:359–68. DOI: 10.1002/jbm.a.32381. 6. DOI: 10.1126/science.996549.
28. Perez RA, Mestres G, 2016, Role of Pore Size and 40. Wu D, Isaksson P, Ferguson SJ, et al., 2018, Young’s
Morphology in Musculo-skeletal Tissue Regeneration. Mater Modulus of Trabecular Bone at the Tissue Level: A Review.
Sci Eng C, 61:922–39. DOI: 10.1016/j.msec.2015.12.087. Acta Biomater, 78:1–12. DOI: 10.1016/j.actbio.2018.08.001.
29. Lin Y, Liu X, Xiao W, et al., 2015, Long-term Bone 41. Freitas GP, Lopes HB, Souza AT, et al., 2019, Cell Therapy:
Regeneration, Mineralization and Angiogenesis in Rat Effect of Locally Injected Mesenchymal Stromal Cells
International Journal of Bioprinting (2020)–Volume 6, Issue 2 97

