Page 132 - IJB-6-4
P. 132

Preheating of gelatin improves its printability with transglutaminase
               Categorised Review of Inks and their Development. Virtual   as a Novel Application for 4D Food Printing. Food Bioproc
               Phys Prototyp, 14:203–18.                           Tech., 12:1627–45. DOI: 10.1007/s11947-019-02327-6.
           5.   Karyappa  R,  Hashimoto  M,  2019,  Chocolate-based  Ink   17.  Dhariwala B, Hunt E, Boland T, 2004, Rapid Prototyping of
               Three-dimensional  Printing  (Ci3DP).  Sci  Rep,  9:1–11.    Tissue-engineering  Constructs,  Using  Photopolymerizable
               DOI: 10.1038/s41598-019-50583-5.                    Hydrogels  and  Stereolithography.  Tissue Eng,  10:1316–22.
           6.   Gariboldi  MI,  Best  SM,  2015,  Effect  of  Ceramic  Scaffold   DOI: 10.1089/1076327042500256.
               Architectural  Parameters  on  Biological  Response.  Front   18.  Skardal  A,  Zhang  J,  McCoard  L,  et  al.,  2010,
               Bioeng Biotech, 3:151. DOI: 10.3389/fbioe.2015.00151.  Photocrosslinkable  Hyaluronan-gelatin  Hydrogels  for
           7.   Sun  H,  Zhu  F,  Hu  Q, et al.,  2014,  Controlling  Stem  Cell-  Two-step Bioprinting.  Tissue Eng Part  A,  16:2675–85.
               mediated Bone Regeneration Through Tailored Mechanical   DOI: 10.1089/ten.tea.2009.0798.
               Properties of Collagen Scaffolds. Biomaterials, 35:1176–84.   19.  Billiet T,  Gevaert  E,  De  Schryver T, et al.,  2014, The  3D
               DOI: 10.1016/j.biomaterials.2013.10.054.            Printing  of Gelatin  Methacrylamide  Cell-laden  Tissue-
           8.   Kuttappan  S,  Mathew  D,  Nair  MB,  2016,  Biomimetic   engineered Constructs with High Cell Viability. Biomaterials,
               Composite Scaffolds Containing Bioceramics and Collagen/  35: 49–62. DOI: 10.1016/j.biomaterials.2013.09.078.
               Gelatin  for Bone  Tissue Engineering  a  Mini  Review.   20.  Duan B, Hockaday LA, Kang KH, et al., 2013, 3D Bioprinting
               Int J Biol Macromol,  93:1390–401.  DOI:  10.1016/j.  of  Heterogeneous  Aortic  Valve  Conduits  with  Alginate/
               ijbiomac.2016.06.043.                               Gelatin  Hydrogels.  J Biomed Mater ResA,  101:1255–64.
           9.   Irvine SA, Agrawal A, Lee BH, et al., 2015, Printing Cell-  DOI: 10.1002/jbm.a.34420.
               laden  Gelatin  Constructs  by  Free-form  Fabrication  and   21.  Kirchmajer DM, Iii RG, 2015, An Overview of the Suitability
               Enzymatic  Protein  Crosslinking.  Biomed Microdevices,   of  Hydrogel-forming  Polymers  for  Extrusion-based
               17:16. DOI: 10.1007/s10544-014-9915-8.              3D-printing.  J Mater Chem B,  3:4105–17.  DOI:  10.1039/
           10.  Bettadapur A, Suh GC, Geisse NA, et al., 2016, Prolonged   c5tb00393h.
               Culture  of  Aligned  Skeletal  Myotubes  on  Micromolded   22.  Chang R, Nam J, Sun W, 2008, Effects of Dispensing Pressure
               Gelatin  Hydrogels.  Sci Rep,  6:28855.  DOI:  10.1038/  and Nozzle Diameter on Cell Survival from Solid Freeform
               srep28855.                                          Fabrication Based  Direct  Cell Writing. Tissue Eng Part A,
           11.  Osorio  FA,  Bilbao  E,  Bustos  R, et al.,  2007,  Effects   14:41–8. DOI: 10.1089/ten.2007.0004.
               of  Concentration,  Bloom  Degree,  and  pH  on  Gelatin   23.  Mondal  MI,  2019,  Cellulose-Based  Superabsorbent
               Melting  and  Gelling Temperatures  Using  Small Amplitude   Hydrogels. Springer, Berlin, Germany.
               Oscillatory  Rheology.  Int J Food Prop,  10:841–51.    24.  Tice L, Moore A, 1952, Heat Denatured Gelatin. J Am Pharm
               DOI: 10.1080/10942910601128895.                     Assoc, 41:631–3.
           12.  Pepelanova  I,  Kruppa  K,  Scheper T, et  al.,  2018,  Gelatin-  25.  Qi J, Zhang WW, Feng XC, et al., 2018, Thermal Degradation
               Methacryloyl  (GelMA)  Hydrogels  with  Defined  Degree  of   of Gelatin Enhances its Ability to Bind Aroma Compounds:
               Functionalization as a Versatile Toolkit for 3D Cell Culture   Investigation  of Underlying  Mechanisms.  Food Hydrocoll,
               and Extrusion Bioprinting.  Bioengineering  (Basel),  5:55.   83:497–510. DOI: 10.1016/j.foodhyd.2018.03.021.
               DOI: 10.3390/bioengineering5030055.             26.  Xing Q, Yates K, Vogt C, et al., 2014, Increasing Mechanical
           13.  Karyappa R, Ching T, Hashimoto M, 2020, Embedded Ink   Strength  of  Gelatin  Hydrogels  by  Divalent  Metal  Ion
               Writing (EIW) of Polysiloxane Inks. ACS Appl Mater Inter,   Removal. Sci Rep, 4:4706. DOI: 10.1038/srep04706.
               12:23565–75. DOI: 10.1021/acsami.0c03011.       27.  Janmey  PA,  Miller  RT,  2011,  Mechanisms  of  Mechanical
           14.  Karyappa  R,  Ohno  A,  Hashimoto  M,  2019,  Immersion   Signaling in Development and Disease. J Cell Sci, 124:9–18.
               Precipitation 3D Printing (ip 3DP). Mater Horiz, 6:1834–44.   28.  Solon  J,  Levental  I,  Sengupta  K, et al.,  2007,  Fibroblast
               DOI: 10.1039/c9mh00730j.                            Adaptation and Stiffness Matching to Soft Elastic Substrates.
           15.  Melocchi  A,  Parietti  F,  Maroni  A, et  al.,  2016,  Hot-melt   Biophys J, 93:4453–61. DOI: 10.1529/biophysj.106.101386.
               Extruded  Filaments  Based  on  Pharmaceutical  Grade   29.  Mogha  P,  Srivastava  A,  Kumar  S,  et  al.,  2019,  Hydrogel
               Polymers for 3D Printing by Fused Deposition Modeling. Int   Scaffold with Substrate Elasticity Mimicking Physiological-
               J Pharm, 509:255–63. DOI: 10.1016/j.ijpharm.2016.05.036.  niche  Promotes  Proliferation  of  Functional  Keratinocytes.
           16.  Ghazal AF, Zhang M, Liu Z, 2019, Spontaneous Color Change   RSC Adv, 9:10174–83. DOI: 10.1039/c9ra00781d.
               of 3D Printed Healthy Food Product over Time after Printing   30.  Chan SW, Rizwan M, Yim EK, 2020, Emerging Methods for

           128                         International Journal of Bioprinting (2020)–Volume 6, Issue 4
   127   128   129   130   131   132   133   134   135   136