Page 132 - IJB-6-4
P. 132
Preheating of gelatin improves its printability with transglutaminase
Categorised Review of Inks and their Development. Virtual as a Novel Application for 4D Food Printing. Food Bioproc
Phys Prototyp, 14:203–18. Tech., 12:1627–45. DOI: 10.1007/s11947-019-02327-6.
5. Karyappa R, Hashimoto M, 2019, Chocolate-based Ink 17. Dhariwala B, Hunt E, Boland T, 2004, Rapid Prototyping of
Three-dimensional Printing (Ci3DP). Sci Rep, 9:1–11. Tissue-engineering Constructs, Using Photopolymerizable
DOI: 10.1038/s41598-019-50583-5. Hydrogels and Stereolithography. Tissue Eng, 10:1316–22.
6. Gariboldi MI, Best SM, 2015, Effect of Ceramic Scaffold DOI: 10.1089/1076327042500256.
Architectural Parameters on Biological Response. Front 18. Skardal A, Zhang J, McCoard L, et al., 2010,
Bioeng Biotech, 3:151. DOI: 10.3389/fbioe.2015.00151. Photocrosslinkable Hyaluronan-gelatin Hydrogels for
7. Sun H, Zhu F, Hu Q, et al., 2014, Controlling Stem Cell- Two-step Bioprinting. Tissue Eng Part A, 16:2675–85.
mediated Bone Regeneration Through Tailored Mechanical DOI: 10.1089/ten.tea.2009.0798.
Properties of Collagen Scaffolds. Biomaterials, 35:1176–84. 19. Billiet T, Gevaert E, De Schryver T, et al., 2014, The 3D
DOI: 10.1016/j.biomaterials.2013.10.054. Printing of Gelatin Methacrylamide Cell-laden Tissue-
8. Kuttappan S, Mathew D, Nair MB, 2016, Biomimetic engineered Constructs with High Cell Viability. Biomaterials,
Composite Scaffolds Containing Bioceramics and Collagen/ 35: 49–62. DOI: 10.1016/j.biomaterials.2013.09.078.
Gelatin for Bone Tissue Engineering a Mini Review. 20. Duan B, Hockaday LA, Kang KH, et al., 2013, 3D Bioprinting
Int J Biol Macromol, 93:1390–401. DOI: 10.1016/j. of Heterogeneous Aortic Valve Conduits with Alginate/
ijbiomac.2016.06.043. Gelatin Hydrogels. J Biomed Mater ResA, 101:1255–64.
9. Irvine SA, Agrawal A, Lee BH, et al., 2015, Printing Cell- DOI: 10.1002/jbm.a.34420.
laden Gelatin Constructs by Free-form Fabrication and 21. Kirchmajer DM, Iii RG, 2015, An Overview of the Suitability
Enzymatic Protein Crosslinking. Biomed Microdevices, of Hydrogel-forming Polymers for Extrusion-based
17:16. DOI: 10.1007/s10544-014-9915-8. 3D-printing. J Mater Chem B, 3:4105–17. DOI: 10.1039/
10. Bettadapur A, Suh GC, Geisse NA, et al., 2016, Prolonged c5tb00393h.
Culture of Aligned Skeletal Myotubes on Micromolded 22. Chang R, Nam J, Sun W, 2008, Effects of Dispensing Pressure
Gelatin Hydrogels. Sci Rep, 6:28855. DOI: 10.1038/ and Nozzle Diameter on Cell Survival from Solid Freeform
srep28855. Fabrication Based Direct Cell Writing. Tissue Eng Part A,
11. Osorio FA, Bilbao E, Bustos R, et al., 2007, Effects 14:41–8. DOI: 10.1089/ten.2007.0004.
of Concentration, Bloom Degree, and pH on Gelatin 23. Mondal MI, 2019, Cellulose-Based Superabsorbent
Melting and Gelling Temperatures Using Small Amplitude Hydrogels. Springer, Berlin, Germany.
Oscillatory Rheology. Int J Food Prop, 10:841–51. 24. Tice L, Moore A, 1952, Heat Denatured Gelatin. J Am Pharm
DOI: 10.1080/10942910601128895. Assoc, 41:631–3.
12. Pepelanova I, Kruppa K, Scheper T, et al., 2018, Gelatin- 25. Qi J, Zhang WW, Feng XC, et al., 2018, Thermal Degradation
Methacryloyl (GelMA) Hydrogels with Defined Degree of of Gelatin Enhances its Ability to Bind Aroma Compounds:
Functionalization as a Versatile Toolkit for 3D Cell Culture Investigation of Underlying Mechanisms. Food Hydrocoll,
and Extrusion Bioprinting. Bioengineering (Basel), 5:55. 83:497–510. DOI: 10.1016/j.foodhyd.2018.03.021.
DOI: 10.3390/bioengineering5030055. 26. Xing Q, Yates K, Vogt C, et al., 2014, Increasing Mechanical
13. Karyappa R, Ching T, Hashimoto M, 2020, Embedded Ink Strength of Gelatin Hydrogels by Divalent Metal Ion
Writing (EIW) of Polysiloxane Inks. ACS Appl Mater Inter, Removal. Sci Rep, 4:4706. DOI: 10.1038/srep04706.
12:23565–75. DOI: 10.1021/acsami.0c03011. 27. Janmey PA, Miller RT, 2011, Mechanisms of Mechanical
14. Karyappa R, Ohno A, Hashimoto M, 2019, Immersion Signaling in Development and Disease. J Cell Sci, 124:9–18.
Precipitation 3D Printing (ip 3DP). Mater Horiz, 6:1834–44. 28. Solon J, Levental I, Sengupta K, et al., 2007, Fibroblast
DOI: 10.1039/c9mh00730j. Adaptation and Stiffness Matching to Soft Elastic Substrates.
15. Melocchi A, Parietti F, Maroni A, et al., 2016, Hot-melt Biophys J, 93:4453–61. DOI: 10.1529/biophysj.106.101386.
Extruded Filaments Based on Pharmaceutical Grade 29. Mogha P, Srivastava A, Kumar S, et al., 2019, Hydrogel
Polymers for 3D Printing by Fused Deposition Modeling. Int Scaffold with Substrate Elasticity Mimicking Physiological-
J Pharm, 509:255–63. DOI: 10.1016/j.ijpharm.2016.05.036. niche Promotes Proliferation of Functional Keratinocytes.
16. Ghazal AF, Zhang M, Liu Z, 2019, Spontaneous Color Change RSC Adv, 9:10174–83. DOI: 10.1039/c9ra00781d.
of 3D Printed Healthy Food Product over Time after Printing 30. Chan SW, Rizwan M, Yim EK, 2020, Emerging Methods for
128 International Journal of Bioprinting (2020)–Volume 6, Issue 4

