Page 31 - IJB-6-4
P. 31
Shpichka, et al.
of Cell Types and Trends with Age. ACS Chem Neurosci, Bioprinting, is it Worth it? Bioprinting, 15:e00052. DOI:
11(11):1555–62. DOI: 10.1021/acschemneuro.0c00210. 10.1016/j.bprint.2019.e00052.
90. Harmer D, Gilbert M, Borman R, et al., 2002, Quantitative 102. Ng WL, Lee JM, Zhou M, et al., 2020, Vat Polymerization-
mRNA Expression Profiling of ACE 2, a Novel Homologue Based Bioprinting Process, Materials, Applications and
of Angiotensin Converting Enzyme. FEBS Lett, 532(1– Regulatory Challenges. Biofabrication, 12(2):22001. DOI:
2):107–10. DOI: 10.1016/s0014-5793(02)03640-2. 10.1088/1758-5090/ab6034.
91. Wang Z, Xu X, 2020, scRNA-seq Profiling of Human Testes 103. Matai I, Kaur G, Seyedsalehi A, et al., 2020, Progress in
Reveals the Presence of the ACE2 Receptor, A Target for 3D Bioprinting Technology for Tissue/Organ Regenerative
SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Engineering. Biomaterials, 226:119536. DOI: 10.1016/j.
Cells. Cells, 9:920. DOI: 10.3390/cells9040920. biomaterials.2019.119536.
92. Song H, Seddighzadeh B, Cooperberg MR, et al., 2020, 104. Zurina I, Shpichka A, Saburina I, et al., 2018, 2D/3D Buccal
Expression of ACE2, the SARS-CoV-2 Receptor, and Epithelial Cell Self-Assembling as a Tool for Cell Phenotype
TMPRSS2 in Prostate Epithelial Cells. Eur Urol, 78(2):296– Maintenance and Fabrication of Multilayered Epithelial
8. DOI: 10.1101/2020.04.24.056259. Linings In Vitro. Biomed Mater, 13(5):054104. DOI:
93. Qi F, Qian S, Zhang S, et al., 2020, Single Cell RNA 10.1088/1748-605x/aace1c.
Sequencing of 13 Human Tissues Identify Cell Types and 105. Moldovan NI, Hibino N, Nakayama K, 2017, Principles of
Receptors of Human Coronaviruses. Biochem Biophys Res the Kenzan Method for Robotic Cell Spheroid-Based Three-
Commun, 526(1):135–40. DOI: 10.1101/2020.02.16.951913. Dimensional Bioprinting. Tissue Eng Part B Rev, 23(3):237–
94. Zou X, Chen K, Zou J, et al., 2020, Single-Cell RNA-seq 44. DOI: 10.1089/ten.teb.2016.0322.
Data Analysis on the Receptor ACE2 Expression Reveals 106. Gorkun AA, Shpichka AI, Zurina IM, et al., 2018, Angiogenic
the Potential Risk of Different Human Organs Vulnerable Potential of Spheroids from Umbilical Cord and Adipose-
to 2019-nCoV Infection. Front Med, 14(2):185–92. DOI: Derived Multipotent Mesenchymal Stromal Cells within
10.1007/s11684-020-0754-0. Fibrin Gel. Biomed Mater, 13(4):44108. DOI: 10.1088/1748-
95. Lukassen S, Chua RL, Trefzer T, et al., 2020, SARS -CoV-2 605x/aac22d.
Receptor ACE 2 and TMPRSS 2 are Primarily Expressed in 107. Shpichka A, Osipova D, Efremov Y, et al., 2020, Fibrin-based
Bronchial Transient Secretory Cells. EMBO J, 39(10):1–15. Bioinks: New Tricks from an Old Dog. Int J Bioprinting,
DOI: 10.15252/embj.20105114. 6(3):1–14. DOI: 10.18063/ijb.v6i3.269.
96. Chen YW, Lee MS, Lucht A, et al., 2010, TMPRSS2, a Serine 108. Kornev VA, Grebenik EA, Solovieva AB, et al., 2018,
Protease Expressed in the Prostate on the Apical Surface Hydrogel-assisted Neuroregeneration Approaches
of Luminal Epithelial Cells and Released into Semen in Towards Brain Injury Therapy: A State-of-the-Art Review.
Prostasomes, is Misregulated in Prostate Cancer Cells. Am J Comput Struct Biotechnol J, 16:488–502. DOI: 10.1016/j.
Pathol, 176(6):2986–96. DOI: 10.2353/ajpath.2010.090665. csbj.2018.10.011.
97. Sungnak W, Huang N, Bécavin C, et al., 2020, SARS-CoV-2 109. Shpichka AI, Konarev PV, Efremov YM, et al., 2020, Digging
Entry Factors are Highly Expressed in Nasal Epithelial Cells Deeper: Structural Background of PEGylated fi Brin Gels in
Together with Innate Immune Genes. Nat Med, 26(5):681–7. Cell Migration and lumenogenesis. RSC Adv, 10:4190–200.
DOI: 10.1038/s41591-020-0868-6. DOI: 10.1039/c9ra08169k.
98. Ng WL, Chua CK, Shen YF, 2019, Print Me An Organ! Why 110. De Rudder C, Arroyo MC, Lebeer S, et al., 2018, Modelling
We Are Not There Yet. Prog Polym Sci, 97:101145. DOI: Upper Respiratory Tract Diseases: Getting Grips on Host-
10.1016/j.progpolymsci.2019.101145. microbe Interactions in Chronic Rhinosinusitis Using In Vitro
99. Ozbolat IT, Hospodiuk M, 2016, Current Advances Technologies. Microbiome, 6(1):75. DOI: 10.1186/s40168-
and Future Perspectives in Extrusion-Based 018-0462-z.
Bioprinting. Biomaterials,;76:321–43. DOI: 10.1016/j. 111. Wang L, Shen Y, Li M, et al., 2020, Clinical Manifestations
biomaterials.2015.10.076. and Evidence of Neurological Involvement in 2019 Novel
100. Saunders RE, Derby B, 2014, Inkjet Printing Biomaterials for Coronavirus SARS-CoV-2: A Systematic Review and Meta-
Tissue Engineering: Bioprinting. Int Mater Rev, 59(8):430– analysis. J Neurol, 2020;1–13. DOI: 10.1007/s00415-020-
48. DOI: 10.1179/1743280414y.0000000040. 09974-2.
101. Antoshin AA, Churbanov SN, Minaev NV, et al., 2019, LIFT- 112. Li ST, Young TH, Huang TW, 2018, Poly (ethylene-co-
International Journal of Bioprinting (2020)–Volume 6, Issue 4 27

