Page 33 - IJB-6-4
P. 33

Shpichka, et al.
               Aspects  of  Native  Physiology  and  ADME/Tox  Functions.   Organ-Chip  for  Interconnected  Long-Term  Co-culture  of
               iScience, 2:156–67. DOI: 10.1016/j.isci.2018.03.015.  Human Intestine, Liver, Skin and Kidney Equivalents. Lab
           137.  Ma J, Wang Y, Liu J, 2018, Bioprinting of 3D Tissues/Organs   Chip, 15(12):2688–99. DOI: 10.1039/c5lc00392j.
               Combined  with  Microfluidics.  RSC Adv,  8(39):21712–27.   145.  Vernetti L, Gough A, Baetz N, et al., 2017, Functional Coupling
               DOI: 10.1039/c8ra03022g.                            of Human Microphysiology Systems: Intestine, Liver, Kidney
           138.  Yu  F,  Choudhury  D,  2019,  Microfluidic  Bioprinting  for   Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle.
               Organ-on-a-Chip Models. Drug Discov Today, 24(6):1248–  Sci Rep, 7(1):1–14. DOI: 10.1038/srep44517.
               57. DOI: 10.1016/j.drudis.2019.03.025.          146.  Skardal A, Murphy SV, Devarasetty M, et al., 2017, Multi-
           139.  Miri AK, Mostafavi E, Khorsandi D, et al., 2019, Bioprinters   Tissue Interactions in an Integrated Three-Tissue Organ-on-
               for  Organs-on-Chips.  Biofabrication,  11(4):42002.  DOI:   a-Chip Platform. Sci Rep, 7(1):1–16.
               10.1088/1758-5090/ab2798.                       147.  Ramadan  Q,  Ting  FC,  2016,  In Vitro  Micro-Physiological
           140.  Koroleva A, Deiwick A, Nguyen A, et al., 2016, Hydrogel-  Immune-Competent  Model  of  the  Human  Skin.  Lab Chip,
               Based  Microfluidics  for  Vascular  Tissue  Engineering.   16(10):1899–908. DOI: 10.1039/c6lc00229c.
               BioNanoMaterials,  17(1–2):19–32.  DOI:  10.1515/bnm-  148.  Harrington H, Cato P, Salazar F, et al., 2014, Immunocompetent
               2015-0026.                                          3D Model of Human Upper Airway for Disease Modeling
           141.  Ashammakhi N, Wesseling-Perry K, Hasan A, et al., 2018,   and  In Vitro  Drug  Evaluation. Mol Pharm,  11(7):2082–91.
               Kidney-on-a-Chip:  Untapped  Opportunities.  Kidney Int,   DOI: 10.1021/mp5000295.
               94(6):1073–86. DOI: 10.1016/j.kint.2018.06.034.  149.  Gopalakrishnan  N,  Hannam  R,  Casoni  GP,  et  al.,  2015,
           142.  Ribas J, Sadeghi H, Manbachi A, et al., 2016, Cardiovascular   Infection  and  Immunity  on  a  Chip:  A  Compartmentalised
               Organ-on-a-Chip  Platforms  for  Drug  Discovery  and   Microfluidic  Platform  to  Monitor  Immune  Cell  Behaviour
               Development. Appl Vitr Toxicol, 2(2):82–96.         in  Real  Time.  Lab Chip,  15(6):1481–7.  DOI:  10.1039/
           143.  Jahromi  MA,  Abdoli  A,  Rahmanian  M,  et al.,  2019,   c4lc01438c.
               Microfluidic  Brain-on-a-Chip:  Perspectives  for  Mimicking   150.  Rosa PM, Gopalakrishnan N, Ibrahim H, et al., 2016, The
               Neural System Disorders. Mol Neurobiol, 56(12):8489–512.   Intercell Dynamics of T Cells and Dendritic Cells in a Lymph
               DOI: 10.1007/s12035-019-01653-2.                    Node-on-a-Chip  Flow  Device.  Lab Chip,  16(19):3728–40.
           144.  Maschmeyer I, Lorenz AK, Schimek K, et al., 2015, A Four-  DOI: 10.1039/c6lc00702c.






































                                       International Journal of Bioprinting (2020)–Volume 6, Issue 4        29
   28   29   30   31   32   33   34   35   36   37   38