Page 33 - IJB-6-4
P. 33
Shpichka, et al.
Aspects of Native Physiology and ADME/Tox Functions. Organ-Chip for Interconnected Long-Term Co-culture of
iScience, 2:156–67. DOI: 10.1016/j.isci.2018.03.015. Human Intestine, Liver, Skin and Kidney Equivalents. Lab
137. Ma J, Wang Y, Liu J, 2018, Bioprinting of 3D Tissues/Organs Chip, 15(12):2688–99. DOI: 10.1039/c5lc00392j.
Combined with Microfluidics. RSC Adv, 8(39):21712–27. 145. Vernetti L, Gough A, Baetz N, et al., 2017, Functional Coupling
DOI: 10.1039/c8ra03022g. of Human Microphysiology Systems: Intestine, Liver, Kidney
138. Yu F, Choudhury D, 2019, Microfluidic Bioprinting for Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle.
Organ-on-a-Chip Models. Drug Discov Today, 24(6):1248– Sci Rep, 7(1):1–14. DOI: 10.1038/srep44517.
57. DOI: 10.1016/j.drudis.2019.03.025. 146. Skardal A, Murphy SV, Devarasetty M, et al., 2017, Multi-
139. Miri AK, Mostafavi E, Khorsandi D, et al., 2019, Bioprinters Tissue Interactions in an Integrated Three-Tissue Organ-on-
for Organs-on-Chips. Biofabrication, 11(4):42002. DOI: a-Chip Platform. Sci Rep, 7(1):1–16.
10.1088/1758-5090/ab2798. 147. Ramadan Q, Ting FC, 2016, In Vitro Micro-Physiological
140. Koroleva A, Deiwick A, Nguyen A, et al., 2016, Hydrogel- Immune-Competent Model of the Human Skin. Lab Chip,
Based Microfluidics for Vascular Tissue Engineering. 16(10):1899–908. DOI: 10.1039/c6lc00229c.
BioNanoMaterials, 17(1–2):19–32. DOI: 10.1515/bnm- 148. Harrington H, Cato P, Salazar F, et al., 2014, Immunocompetent
2015-0026. 3D Model of Human Upper Airway for Disease Modeling
141. Ashammakhi N, Wesseling-Perry K, Hasan A, et al., 2018, and In Vitro Drug Evaluation. Mol Pharm, 11(7):2082–91.
Kidney-on-a-Chip: Untapped Opportunities. Kidney Int, DOI: 10.1021/mp5000295.
94(6):1073–86. DOI: 10.1016/j.kint.2018.06.034. 149. Gopalakrishnan N, Hannam R, Casoni GP, et al., 2015,
142. Ribas J, Sadeghi H, Manbachi A, et al., 2016, Cardiovascular Infection and Immunity on a Chip: A Compartmentalised
Organ-on-a-Chip Platforms for Drug Discovery and Microfluidic Platform to Monitor Immune Cell Behaviour
Development. Appl Vitr Toxicol, 2(2):82–96. in Real Time. Lab Chip, 15(6):1481–7. DOI: 10.1039/
143. Jahromi MA, Abdoli A, Rahmanian M, et al., 2019, c4lc01438c.
Microfluidic Brain-on-a-Chip: Perspectives for Mimicking 150. Rosa PM, Gopalakrishnan N, Ibrahim H, et al., 2016, The
Neural System Disorders. Mol Neurobiol, 56(12):8489–512. Intercell Dynamics of T Cells and Dendritic Cells in a Lymph
DOI: 10.1007/s12035-019-01653-2. Node-on-a-Chip Flow Device. Lab Chip, 16(19):3728–40.
144. Maschmeyer I, Lorenz AK, Schimek K, et al., 2015, A Four- DOI: 10.1039/c6lc00702c.
International Journal of Bioprinting (2020)–Volume 6, Issue 4 29

