Page 32 - IJB-6-4
P. 32
Bioprinting, microfluidics, and organoids to defeat COVID-19
vinyl alcohol) is a Suitable Substrate for Human Olfactory DOI: 10.1007/s00134-020-06026-1.
Neuroepithelial Cell Differentiation In Vitro through a 124. Ronco C, Reis T, 2020, Kidney Involvement in COVID-19
Defined Regulatory Pathway. Acta Biomater, 68:204–13. and Rationale for Extracorporeal Therapies. Nat Rev Nephrol,
DOI: 10.1016/j.actbio.2017.12.029. 16(6):308–10. DOI: 10.1038/s41581-020-0284-7.
113. Li ST, Young TH, Wang CT, et al., 2018, Chitosan Films 125. Subramanian B, Rudym D, Cannizzaro C, et al., 2010, Tissue-
Promote Formation of Olfactory Neurospheres and Engineered Three-Dimensional In Vitro Models for Normal
Differentiation of Olfactory Receptor Neurons. Rhinology, and Diseased Kidney. Tissue Eng Part A, 16(9):2821–31.
56(4):336–42. DOI: 10.4193/rhin17.155. DOI: 10.1089/ten.tea.2009.0595.
114. Du L, Zou L, Wang Q, et al., 2015, A Novel Biomimetic 126. Sochol RD, Gupta NR, Bonventre JV, 2016, A Role for 3D
Olfactory Cell-based Biosensor with DNA-Directed Site- Printing in Kidney-on-a-Chip Platforms. Curr Transplant
Specific Immobilization of Cells on a Microelectrode Array. Rep, 3(1):82–92. DOI: 10.1007/s40472-016-0085-x.
Sens Actuators B Chem, 217:186–92. DOI: 10.1016/j. 127. Homan KA, Kolesky DB, Skylar-Scott MA, et al., 2016,
snb.2014.08.054. Bioprinting of 3D Convoluted Renal Proximal Tubules
115. Skaat H, Ziv-Polat O, Shahar A, et al., 2011, Enhancement on Perfusable Chips. Sci Rep, 6:34845. DOI: 10.1038/
of Migration, Growth and Differnatiation of Nasal Olfactory srep34845.
Mucosa Cells by Growth Factor-conjugated Fluorescent- 128. Ali M, Kumar A, Yoo JJ, Zahran F, et al., 2019, A Photo-
maghemite Nanoparticles. Bioconjugate Chem, 22(12):2600– Crosslinkable Kidney ECM-Derived Bioink Accelerates
10. DOI: 10.1021/bc200454k. Renal Tissue Formation. Adv Healthc Mater, 8(7):1800992.
116. Horvath L, Umehara Y, Jud C, et al., 2015, Engineering an In DOI: 10.1002/adhm.201800992.
Vitro Air-blood Barrier by 3D Bioprinting. Sci Rep, 5:7974. 129. Chuah JKC, Zink D, 2017, Stem Cell-Derived Kidney
DOI: 10.1038/srep07974. Cells and Organoids: Recent Breakthroughs and Emerging
117. Grigoryan B, Paulsen SJ, Corbett DC, et al., 2019, Applications. Biotechnol Adv, 35(2):150–67. DOI: 10.1016/j.
Multivascular Networks and Functional Intravascular biotechadv.2016.12.001.
Topologies within Biocompatible Hydrogels. Science, 130. King SM, Higgins JW, Nino CR, et al., 2017, 3D Proximal
364(6439):458–64. DOI: 10.1126/science.aav9750. Tubule Tissues Recapitulate Key Aspects of Renal Physiology
118. Lewis KJ, Tibbitt MW, Zhao Y, et al., 2015, In Vitro Model to Enable Nephrotoxicity Testing. Front Physiol, 8(1):1–18.
Alveoli from Photodegradable Microsphere Templates. DOI: 10.3389/fphys.2017.00123.
Biomater Sci, 3(6):821–32. DOI: 10.1039/c5bm00034c. 131. Heydari Z, Najimi M, Mirzaei H, et al., 2020, Tissue
119. Ozbolat IT, Moncal KK, Gudapati H, 2017, Evaluation of Engineering in Liver Regenerative Medicine: Insights into
Bioprinter Technologies. Addit Manuf, 13:179–200. DOI: Novel Translational Technologies. Cells, 9(2):304.
10.1016/j.addma.2016.10.003. 132. Yanagi Y, Nakayama K, Taguchi T, et al., 2017, In Vivo and
120. Miri AK, Nieto D, Iglesias L, et al., 2018, Microfluidics-Enabled Ex Vivo Methods of Growing a Liver Bud Through Tissue
Multimaterial Maskless Stereolithographic Bioprinting. Adv Connection. Sci Rep, 7(1):1–15. DOI: 10.1038/s41598-017-
Mater, 30(27):e1800242. DOI: 10.1002/adma.201870201. 14542-2.
121. Maiullari F, Costantini M, Milan M, et al., 2018, A Multi- 133. Bhise NS, Manoharan V, Massa S, et al., 2016, A Liver-
cellular 3D Bioprinting Approach for Vascularized Heart on-a-Chip Platform with Bioprinted Hepatic Spheroids.
Tissue Engineering Based on HUVECs and iPSC-Derived Biofabrication, 8(1):14101.
Cardiomyocytes. Sci Rep, 8(1):1–15. DOI: 10.1038/s41598- 134. Hashimoto T, Perlot T, Rehman A, et al., 2012, ACE2 Links
018-31848-x. Amino Acid Malnutrition to Microbial Ecology and Intestinal
122. Zhang YS, Arneri A, Bersini S, et al., 2016, Bioprinting Inflammation. Nature, 487(7408):477–81. DOI: 10.1038/
3D Microfibrous Scaffolds for Engineering Endothelialized nature11228.
Myocardium and Heart-on-a-chip. Biomaterials, 110:45–59. 135. Williams CF, Walton GE, Jiang L, et al., 2015, Comparative
DOI: 10.1016/j.biomaterials.2016.09.003. Analysis of Intestinal Tract Models. Annu Rev Food
123. Pan XW, Xu D, Zhang H, et al., 2020, Identification of Sci Technol, 6(1):329–50. DOI: 10.1146/annurev-
a Potential Mechanism of Acute Kidney Injury During food-022814-015429.
the COVID-19 Outbreak: A Study Based on Single-Cell 136. Madden LR, Nguyen TV, Garcia-Mojica S, et al., 2018,
Transcriptome Analysis. Intensive Care Med, 46:1114-1116. Bioprinted 3D Primary Human Intestinal Tissues Model
28 International Journal of Bioprinting (2020)–Volume 6, Issue 4

