Page 23 - IJB-10-6
P. 23

International Journal of Bioprinting                                3D-bioprinted multicellular lung organoids




            92.  Zhu  W,  Qu  X,  Zhu  J,  et  al.  Direct  3D  bioprinting      doi: 10.1088/1758-5090/acd95f
               of prevascularized tissue constructs with complex   102. Ma X, Liu J, Zhu W, et al. 3D bioprinting of functional tissue
               microarchitecture. Biomaterials. 2017;124:106-115.  models for personalized drug screening and in vitro disease
               doi:  10.1016/j.biomaterials.2017.01.042
                                                                  modeling. Adv Drug Deliv Rev. 2018;132:235-251.
            93.  Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting      doi: 10.1016/j.addr.2018.06.011
               techniques: approaches, applications and future prospects.
               J Transl Med. 2016;14:271.                      103. Ashammakhi  N,  Ahadian S,  Xu C,  et  al. Bioinks  and
               doi: 10.1186/s12967-016-1028-0                     bioprinting  technologies  to  make  heterogeneous
                                                                  and biomimetic tissue constructs.  Mater Today Bio.
            94.  Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering   2019;1:100008.
               hydrogels as extracellular matrix mimics.  Nanomedicine      doi: 10.1016/j.mtbio.2019.100008
               (Lond). 2010;5(3):469-484.
               doi: 10.2217/nnm.10.12                          104. Chen XB, Fazel Anvari-Yazdi A, Duan X, et al. Biomaterials
                                                                  /  bioinks  and  extrusion bioprinting.  Bioact Mater.
            95.  Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional   2023;28:511-536.
               printing of complex biological structures by freeform      doi: 10.1016/j.bioactmat.2023.06.006
               reversible embedding of suspended hydrogels.  Sci Adv.
               2015;1(9):e1500758.                             105. Grigoryan B, Paulsen SJ, Corbett DC, et al. Multivascular
               doi: 10.1126/sciadv.1500758                        networks and functional intravascular topologies within
                                                                  biocompatible hydrogels. Science. 2019;364(6439):458-464.
            96.  Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D      doi: 10.1126/science.aav9750
               bioprinting system to produce human-scale tissue constructs
               with structural integrity. Nat Biotechnol. 2016;34(3):312-319.  106. Bernal PN, Delrot P, Loterie D, et al. Volumetric bioprinting
               doi: 10.1038/nbt.3413                              of complex living-tissue constructs within seconds.  Adv
                                                                  Mater. 2019;31(42):e1904209.
            97.  Wang X, Ao Q, Tian X, et al. 3D bioprinting technologies      doi: 10.1002/adma.201904209
               for hard tissue and organ engineering.  Materials (Basel).
               2016;9(10):802.                                 107. Richard C, Neild A, Cadarso VJ. The emerging role of
               doi: 10.3390/ma9110911                             microfluidics in multi-material 3D bioprinting.  Lab Chip.
                                                                  2020;20(12):2044-2056.
            98.  Krakos A, Cieslak A, Hartel E, Labowska MB, Kulbacka      doi: 10.1039/c9lc01184f
               J, Detyna J. 3D bio-printed hydrogel inks promoting lung
               cancer cell growth in a lab-on-chip culturing platform.   108. Mironov V, Kasyanov V, Drake C, Markwald RR.
               Mikrochim Acta. 2023;190(9):349.                   Organ printing: promises and challenges.  Regen Med.
               doi: 10.1007/s00604-023-05931-8                    2008;3(1):93-103.
                                                                  doi:  10.2217/17460751.3.1.93
            99.  Gerboles AG, Galetti M, Rossi S, et al. Three-dimensional
               bioprinting of organoid-based scaffolds (OBST) for long-  109. Sekar MP, Budharaju H, Zennifer A, et al. Current standards
               term  nanoparticle toxicology investigation.  Int J Mol Sci.   and ethical landscape of engineered tissues-3D bioprinting
               2023;24(7):6595.                                   perspective. J Tissue Eng. 2021;12:20417314211027677.
               doi: 10.3390/ijms24076595                          doi: 10.1177/20417314211027677
            100. Urciuolo A, Giobbe GG, Dong Y, et al. Hydrogel-in-hydrogel   110. Saini G, Segaran N, Mayer JL, Saini A, Albadawi H, Oklu
               live bioprinting for guidance and control of organoids and   R. Applications of 3D bioprinting in tissue engineering and
               organotypic cultures. Nat Commun. 2023;14(1):3128.  regenerative medicine. J Clin Med. 2021;10(21):4966.
               doi: 10.1038/s41467-023-37953-4                    doi: 10.3390/jcm10214966
            101. Choi YM, Lee H, Ann M, Song M, Rheey J, Jang J. 3D   111. Huang G, Zhao Y, Chen D, et al. Applications, advancements,
               bioprinted vascularized lung cancer organoid models with   and challenges of 3D bioprinting in organ transplantation.
               underlying disease capable of more precise drug evaluation.   Biomater Sci. 2024;12(6):1425-1448.
               Biofabrication. 2023;15(3):4104.                   doi: 10.1039/d3bm01934a
















            Volume 10 Issue 6 (2024)                        15                                doi: 10.36922/ijb.4092
   18   19   20   21   22   23   24   25   26   27   28