Page 23 - IJB-10-6
P. 23
International Journal of Bioprinting 3D-bioprinted multicellular lung organoids
92. Zhu W, Qu X, Zhu J, et al. Direct 3D bioprinting doi: 10.1088/1758-5090/acd95f
of prevascularized tissue constructs with complex 102. Ma X, Liu J, Zhu W, et al. 3D bioprinting of functional tissue
microarchitecture. Biomaterials. 2017;124:106-115. models for personalized drug screening and in vitro disease
doi: 10.1016/j.biomaterials.2017.01.042
modeling. Adv Drug Deliv Rev. 2018;132:235-251.
93. Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting doi: 10.1016/j.addr.2018.06.011
techniques: approaches, applications and future prospects.
J Transl Med. 2016;14:271. 103. Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and
doi: 10.1186/s12967-016-1028-0 bioprinting technologies to make heterogeneous
and biomimetic tissue constructs. Mater Today Bio.
94. Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering 2019;1:100008.
hydrogels as extracellular matrix mimics. Nanomedicine doi: 10.1016/j.mtbio.2019.100008
(Lond). 2010;5(3):469-484.
doi: 10.2217/nnm.10.12 104. Chen XB, Fazel Anvari-Yazdi A, Duan X, et al. Biomaterials
/ bioinks and extrusion bioprinting. Bioact Mater.
95. Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional 2023;28:511-536.
printing of complex biological structures by freeform doi: 10.1016/j.bioactmat.2023.06.006
reversible embedding of suspended hydrogels. Sci Adv.
2015;1(9):e1500758. 105. Grigoryan B, Paulsen SJ, Corbett DC, et al. Multivascular
doi: 10.1126/sciadv.1500758 networks and functional intravascular topologies within
biocompatible hydrogels. Science. 2019;364(6439):458-464.
96. Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D doi: 10.1126/science.aav9750
bioprinting system to produce human-scale tissue constructs
with structural integrity. Nat Biotechnol. 2016;34(3):312-319. 106. Bernal PN, Delrot P, Loterie D, et al. Volumetric bioprinting
doi: 10.1038/nbt.3413 of complex living-tissue constructs within seconds. Adv
Mater. 2019;31(42):e1904209.
97. Wang X, Ao Q, Tian X, et al. 3D bioprinting technologies doi: 10.1002/adma.201904209
for hard tissue and organ engineering. Materials (Basel).
2016;9(10):802. 107. Richard C, Neild A, Cadarso VJ. The emerging role of
doi: 10.3390/ma9110911 microfluidics in multi-material 3D bioprinting. Lab Chip.
2020;20(12):2044-2056.
98. Krakos A, Cieslak A, Hartel E, Labowska MB, Kulbacka doi: 10.1039/c9lc01184f
J, Detyna J. 3D bio-printed hydrogel inks promoting lung
cancer cell growth in a lab-on-chip culturing platform. 108. Mironov V, Kasyanov V, Drake C, Markwald RR.
Mikrochim Acta. 2023;190(9):349. Organ printing: promises and challenges. Regen Med.
doi: 10.1007/s00604-023-05931-8 2008;3(1):93-103.
doi: 10.2217/17460751.3.1.93
99. Gerboles AG, Galetti M, Rossi S, et al. Three-dimensional
bioprinting of organoid-based scaffolds (OBST) for long- 109. Sekar MP, Budharaju H, Zennifer A, et al. Current standards
term nanoparticle toxicology investigation. Int J Mol Sci. and ethical landscape of engineered tissues-3D bioprinting
2023;24(7):6595. perspective. J Tissue Eng. 2021;12:20417314211027677.
doi: 10.3390/ijms24076595 doi: 10.1177/20417314211027677
100. Urciuolo A, Giobbe GG, Dong Y, et al. Hydrogel-in-hydrogel 110. Saini G, Segaran N, Mayer JL, Saini A, Albadawi H, Oklu
live bioprinting for guidance and control of organoids and R. Applications of 3D bioprinting in tissue engineering and
organotypic cultures. Nat Commun. 2023;14(1):3128. regenerative medicine. J Clin Med. 2021;10(21):4966.
doi: 10.1038/s41467-023-37953-4 doi: 10.3390/jcm10214966
101. Choi YM, Lee H, Ann M, Song M, Rheey J, Jang J. 3D 111. Huang G, Zhao Y, Chen D, et al. Applications, advancements,
bioprinted vascularized lung cancer organoid models with and challenges of 3D bioprinting in organ transplantation.
underlying disease capable of more precise drug evaluation. Biomater Sci. 2024;12(6):1425-1448.
Biofabrication. 2023;15(3):4104. doi: 10.1039/d3bm01934a
Volume 10 Issue 6 (2024) 15 doi: 10.36922/ijb.4092

