Page 42 - IJB-10-6
P. 42

International Journal of Bioprinting                                  Bioprinting for wearable tech and robot




               doi: 10.1016/j.bprint.2023.e00265                  doi: 10.1039/D3LC00909B
            39.  Rasouli R, Villegas KM, Tabrizian M. Acoustofluidics–  52.  Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting
               changing paradigm in tissue engineering, therapeutics   using  reactive fillers:  a  review.  Acta Biomater.  2020;
               development, and biosensing.  Lab  Chip. 2023;23(5):   113:1-22.
               1300-1338.                                         doi: 10.1016/j.actbio.2020.06.040
               doi: 10.1039/D2LC00439A
                                                               53.  Kolan KCR, Semon JA, Bindbeutel AT, et al. Bioprinting
            40.  Raees S, Ullah F, Javed F, et al. Classification, processing, and   with bioactive glass loaded polylactic acid composite and
               applications of bioink and 3D bioprinting: a detailed review.   human adipose stem cells. Bioprinting. 2020;18:e00075.
               Int J Biol Macromol. 2023;232:123476.              doi: 10.1016/j.bprint.2020.e00075
               doi: 10.1016/j.ijbiomac.2023.123476
                                                               54.  Sordi MB, Cruz A, Fredel MC, et al. Three-dimensional
            41.  Wang H, Yu H, Zhou X, et al. An overview of extracellular   bioactive hydrogel-based scaffolds for bone regeneration
               matrix-based bioinks for 3D bioprinting.  Front Bioeng   in implant dentistry.  Mater  Sci  Eng  C  Mater  Biol  Appl.
               Biotechnol. 2022;10:905438.                        2021;124:112055.
               doi: 10.3389/fbioe.2022.905438                     doi: 10.1016/j.msec.2021.112055
            42.  Ong CS, Yesantharao P, Huang CY, et al. 3D bioprinting   55.  Murphy SV, De Coppi P, Atala A. Opportunities and
               using stem cells. Pediatr Res. 2018;83(1):223-231.  challenges of translational 3D bioprinting. Nat Biomed Eng.
               doi: 10.1038/pr.2017.252                           2020;4(4):370-380.
            43.  Zhang H, Wang Y, Zheng Z, et al. Strategies for improving      doi: 10.1038/s41551-019-0471-7
               the 3D printability of decellularized extracellular matrix   56.  Xu H, Zhang Y, Zhang Y, et al. 3D bioprinting advanced
               bioink. Theranostics. 2023;13(8):2562.             biomaterials for craniofacial and dental tissue engineering
               doi: 10.7150/thno.81785                            – a review. Materials & Design. 2024;241:112886.
            44.  Tang M, Rich JN, Chen S. Biomaterials and 3D bioprinting      doi: 10.1016/j.matdes.2024.112886
               strategies to model glioblastoma and the blood-brain barrier.   57.  Khati, V, Ramachandraiah, H, et al. 3D Bioprinting of multi-
               Adv. Mater. 2021;33(5):2004776.                    material decellularized liver matrix hydrogel at physiological
               doi: 10.1002/adma.202004776                        temperatures. Biosensors. 2022;12(7):521.
            45.  Hull SM, Brunel LG, Heilshorn SC. 3D bioprinting of cell‐     doi: 10.3390/bios12070521
               laden hydrogels for improved biological functionality. Adv.   58.  Zhang Y, Enhejirigala, Yao B, et al. Using bioprinting and
               Mater. 2022;34(2):2103691.                         spheroid culture to create a skin model with sweat glands
               doi: 10.1002/adma.202103691                        and hair follicles. Burns Trauma. 2021;9:tkab013.
            46.  Mancha Sánchez E, Gómez-Blanco JC, López Nieto E, et al.      doi: 10.1093/burnst/tkab013
               Hydrogels for bioprinting: a systematic review of hydrogels   59.  O’Shea DG, Hodgkinson T, Curtin CM, et al. An injectable
               synthesis, bioprinting parameters, and bioprinted structures   and  3D  printable  pro-chondrogenic  hyaluronic  acid  and
               behavior. Front Bioeng Biotechnol. 2020;8:776.     collagen type II composite hydrogel for the repair of articular
               doi: 10.3389/fbioe.2020.00776                      cartilage defects. Biofabrication. 2023;16(1):015007.
            47.  Liu F, Wang X. Synthetic polymers for organ 3D printing.      doi: 10.1088/1758-5090/ad047a
               Polymers. 2020;12(8):1765.                      60.  Cruz EM, Machado LS, Zamproni LN, et al. A gelatin
               doi: 10.3390/polym12081765                         methacrylate-based hydrogel as a potential bioink for 3D
            48.  Muthukrishnan L. Imminent antimicrobial bioink   bioprinting and neuronal differentiation.  Pharmaceutics.
               deploying  cellulose,  alginate,  EPS  and  synthetic  polymers   2023;15(2):627.
               for 3D bioprinting of tissue constructs. Carbohydr Polym.      doi: 10.3390/pharmaceutics15020627
               2021;260:117774.                                61.  Xiong R, Zhang Z, Chai W, et al. Freeform drop-on-demand
               doi: 10.1016/j.carbpol.2021.117774                 laser printing of 3D alginate and cellular constructs.
            49.  Cai Y, Chang SY, Gan SW, et al. Nanocomposite bioinks for   Biofabrication. 2015;7:045011.
               3D bioprinting. Acta Biomater. 2022;151:45-69.     doi: 10.1088/1758-5090/7/4/045011
               doi: 10.1016/j.actbio.2022.08.014               62.  Xie M, Gao Q, Zhao H, et al. Electro‐assisted bioprinting
            50.  Loukelis  K,  Helal  ZA,  Mikos AG, et  al. Nanocomposite   of low‐concentration GelMA microdroplets.  Small.
               bioprinting for tissue engineering applications.  Gels.   2019;15:1804216.
               2023;9(2):103.                                     doi: 10.1002/smll.201804216
               doi: 10.3390/gels9020103
                                                               63.  Puistola P, Miettinen S, Skottman H, et al. Novel strategy
            51.  Dong H, Lin J, Tao Y, et al. AI-enhanced biomedical   for multi-material 3D bioprinting of human stem cell based
               micro/nanorobots in microfluidics.  Lab  Chip.  2024;24:   corneal stroma with heterogenous design. Mater Today Bio.
               1419-1440.                                         2024;24:100924.

            Volume 10 Issue 6 (2024)                        34                                doi: 10.36922/ijb.3590
   37   38   39   40   41   42   43   44   45   46   47