Page 43 - IJB-10-6
P. 43
International Journal of Bioprinting Bioprinting for wearable tech and robot
doi: 10.1016/j.mtbio.2023.100924 doi: 10.1002/advs.202306470
64. Mahdavi SS, Abdekhodaie MJ, Kumar H, et al. 76. Sun H, Xiong L, Huang Y, et al. AI-aided on-chip nucleic
Stereolithography 3D bioprinting method for fabrication acid assay for smart diagnosis of infectious disease. Fundam
of human corneal stroma equivalent. Ann Biomed Eng. Res. 2022;2(3):476-486.
2020;48:1955-1970. doi: 10.1016/j.fmre.2021.12.005
doi: 10.1007/s10439-020-02537-6
77. Sujigarasharma K, Sharulatha S, Lawanya Shri M, et
65. Boularaoui S, Shanti A, Lanotte M, et al. Nanocomposite al. Optimizing 3D bioprinting using advanced deep
conductive bioinks based on low-concentration GelMA and learning techniques a comparative study of CNN,
MXene nanosheets/gold nanoparticles providing enhanced RNN, and GAN. Comput Intell Bioprint. 2024;8:
printability of functional skeletal muscle tissues. ACS 157-173.
Biomater Sci Eng. 2021;7(12):5810-5822. doi: 10.1002/9781394204878.ch8
doi: 10.1021/acsbiomaterials.1c01193 78. Ramesh S, Deep A, Tamayol A, et al. Advancing 3D
66. Lackner F, Šurina P, Fink J, et al. 4‐axis 3D‐printed tubular bioprinting through machine learning and artificial
biomaterials imitating the anisotropic nanofiber orientation intelligence. Bioprinting. 2024;38:e00331.
of porcine aortae. Adv Healthc Mater. 2024;13(2):2302348. doi: 10.1016/j.bprint.2024.e00331
doi: 10.1002/adhm.202302348 79. Sun H, Xie W, Mo J, et al. Deep learning with microfluidics
67. Mousavi A, Hedayatnia A, van Vliet PP, et al. for on-chip droplet generation, control, and analysis. Front
Development of photocrosslinkable bioinks with improved Bioeng Biotechnol. 2023;11:1208648.
electromechanical properties for 3D bioprinting of cardiac doi: 10.3389/fbioe.2023.1208648
BioRings. Applied Materials Today. 2024;36:102035. 80. Liu C, Wang L, Lu W, et al. Computer vision-aided
doi: 10.1016/j.apmt.2023.102035 bioprinting for bone research. Bone Res. 2022;10(1):21.
68. Wang Y, Yuan X, Yao B, et al. Tailoring bioinks of extrusion- doi: 10.1038/s41413-022-00192-2
based bioprinting for cutaneous wound healing. Bioact 81. Thai MT, Phan PT, Tran HA, et al. Advanced soft robotic
Mater. 2022;17:178-194. system for in situ 3D bioprinting and endoscopic surgery.
doi: 10.1016/j.bioactmat.2022.01.024 Adv Sci. 2023;10(12):2205656.
69. Ozbek II, Saybasili H, Ulgen KO. Applications of 3D doi: 10.1002/advs.202205656
bioprinting technology to brain cells and brain tumor 82. Wang Z, Xiao C, Roy M, et al. Bioinspired skin towards next-
models: special emphasis to glioblastoma. ACS Biomater Sci generation rehabilitation medicine. Front Bioeng Biotechnol.
Eng. 2024;10(5):2616-2635. 2023;11:1196174.
doi: 10.1021/acsbiomaterials.3c01569 doi: 10.3389/fbioe.2023.1196174
70. Daly AC, Prendergast ME, Hughes AJ, et al. Bioprinting for 83. Motter Catarino C, Cigaran Schuck D, Dechiario L, et al.
the biologist. Cell. 2021;184:18-32. Incorporation of hair follicles in 3D bioprinted models of
doi: 10.1016/j.cell.2020.12.002 human skin. Sci Adv. 2023;9(41):eadg0297.
71. Ramesh S, Deep A, Tamayol A, et al. Advancing 3D doi: 10.1126/sciadv.adg0297
bioprinting through machine learning and artificial 84. Zhang B, Li J, Zhou J, et al. A three-dimensional liquid
intelligence. Bioprinting. 2024:e00331. diode for soft, integrated permeable electronics. Nature.
doi: 10.1016/j.bprint.2024.e00331 2024;628:84-92.
72. Manz A, Graber N, Widmer HM. Miniaturized total doi: 10.1038/s41586-024-07161-1
chemical analysis systems: a novel concept for chemical 85. Jorgensen AM, Gorkun A, Mahajan N, et al. Multicellular
sensing. Sens Actuators B Chem. 1990;1(1-6):244-248. bioprinted skin facilitates human-like skin architecture in
doi: 10.1016/0925-4005(90)80209-I vivo. Sci Transl Med. 2023;15(716):eadf7547.
73. Sun H, Jia Y, Dong H, et al. Combining additive doi: 10.1126/scitranslmed.adf7547
manufacturing with microfluidics: an emerging method for 86. Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin.
developing novel organs-on-chips. Curr Opin Chem Eng. Nat Mater. 2016;15(9):937-950.
2020;28:1-9. doi: 10.1038/nmat4671
doi: 10.1016/j.coche.2019.10.006
87. Dong T, Hu J, Dong Y, et al. Advanced biomedical and
74. Yu S, Jing Y, Fan Y, et al. Ultrahigh efficient emulsification electronic dual-function skin patch created through
with drag-reducing liquid gating interfacial behavior. Proc microfluidic-regulated 3D bioprinting. Bioact Mater.
Natl Acad Sci USA. 2022;119(29):e2206462119. 2024;40:261-274.
doi: 10.1073/pnas.2206462119 doi: 10.1016/j.bioactmat.2024.06.015
75. Cai B, Kilian D, Ramos Mejia D, et al. Diffusion‐based 3D 88. Yang JC, Mun J, Kwon SY, et al. Electronic skin: recent
bioprinting strategies. Adv Sci. 2024;11(8):2306470. progress and future prospects for skin‐attachable devices
Volume 10 Issue 6 (2024) 35 doi: 10.36922/ijb.3590

