Page 44 - IJB-10-6
P. 44
International Journal of Bioprinting Bioprinting for wearable tech and robot
for health monitoring, robotics, and prosthetics. Adv. Mater. 100. Hsu RS, Li SJ, Fang JH, et al. Wireless charging-mediated
2019;31:1904765. angiogenesis and nerve repair by adaptable microporous
doi: 10.1002/adma.201904765 hydrogels from conductive building blocks. Nat Commun.
2022;13(1):5172.
89. Apelgren P, Amoroso M, Säljö K, et al. Long‐term in
vivo integrity and safety of 3D‐bioprinted cartilaginous doi: 10.1038/s41467-022-32912-x
constructs. J Biomed Mater Res B Appl Biomater. 101. Fang Y, Wang C, Liu Z, et al. 3D printed conductive
2021;109:126-136. multiscale nerve guidance conduit with hierarchical
doi: 10.1002/jbm.b.34687 fibers for peripheral nerve regeneration. Adv Sci.
2023;10(12):2205744.
90. Agarwala S, Lee JM, Ng WL, et al. A novel 3D bioprinted
flexible and biocompatible hydrogel bioelectronic platform. doi: 10.1002/advs.202205744
Biosens Bioelectron. 2018;102:365-371. 102. Courtine G, Micera S, DiGiovanna J, et al. Brain-
doi: 10.1016/j.bios.2017.11.039 machine interface: closer to therapeutic reality?. Lancet.
2013;381(9866):515-517.
91. Krishnadoss V, Kanjilal B, Hesketh A, et al. In situ 3D
printing of implantable energy storage devices. Chem Eng J. doi: 10.1016/S0140-6736(12)62164-3
2021;409:128213. 103. Zhang Q, Hu S, Talay R, et al. A prototype closed-loop
doi: 10.1016/j.cej.2020.128213 brain–machine interface for the study and treatment of pain.
Nat Biomed Eng. 2023;7(4):533-545.
92. Lei IM, Jiang C, Lei CL, et al. 3D printed biomimetic
cochleae and machine learning co-modelling provides doi: 10.1038/s41551-021-00736-7
clinical informatics for cochlear implant patients. Nat 104. Kantawala B, Hamitoglu AE, Nohra L, et al. Microengineered
Commun. 2021;12:6260. neuronal networks: enhancing brain-machine interfaces.
doi: 10.1038/s41467-021-26491-6 Ann Med Surg. 2024;86(6):3535-3542.
doi: 10.1097/MS9.0000000000002130
93. Xu Y, Rothe R, Voigt D, et al. Convergent synthesis of
diversified reversible network leads to liquid metal- 105. Ghafoor U, Kim S, Hong KS. Selectivity and longevity of
containing conductive hydrogel adhesives. Nat Commun. peripheral-nerve and machine interfaces: a review. Front
2021;12(1):2407. Neurorobot. 2017;11:59.
doi: 10.1038/s41467-021-22675-2 doi: 10.3389/fnbot.2017.00059
94. Chatterjee B, Mohseni P, Sen S. Bioelectronic sensor 106. Sun G, Zeng F, McCartin M, et al. Closed-loop stimulation
nodes for the internet of bodies. Annu Rev Biomed Eng. using a multiregion brain-machine interface has analgesic
2023;25:101-129. effects in rodents. Sci Transl Med. 2022;14(651):eabm5868.
doi: 10.1146/annurev-bioeng-110220-112448 doi: 10.1126/scitranslmed.abm5868
95. Kim Y, Alimperti S, Choi P, et al. An inkjet printed flexible 107. Adewole DO, Struzyna LA, Burrell JC, et al. Development of
electrocorticography (ECoG) microelectrode array on a thin optically controlled “living electrodes” with long-projecting
parylene-C film. Sensors. 2022;22(3):1277. axon tracts for a synaptic brain-machine interface. Sci Adv.
doi: 10.3390/s22031277 2021;7(4):eaay5347.
doi: 10.1126/sciadv.aay5347
96. Xie M, Shi Y, Zhang C, et al. In situ 3D bioprinting with
bioconcrete bioink. Nat Commun. 2022;13(1):3597. 108. Afanasenkau D, Kalinina D, Lyakhovetskii V, et al. Rapid
doi: 10.1038/s41467-022-30997-y prototyping of soft bioelectronic implants for use as neuro-
muscular interfaces. Nat Biomed Eng. 2020;4(10):1010-1022.
97. Sondell M, Lundborg G, Kanje M. Vascular endothelial
growth factor has neurotrophic activity and stimulates doi: 10.1038/s41551-020-00615-7
axonal outgrowth, enhancing cell survival and Schwann cell 109. Liu Y, Liu J, Chen S, et al. Soft and elastic hydrogel-based
proliferation in the peripheral nervous system. J Neurosci. microelectronics for localized low-voltage neuromodulation.
1999;19:5731-5740. Nat Biomed Eng. 2019;3(1):58-68.
doi: 10.1523/JNEUROSCI.19-14-05731.1999 doi: 10.1038/s41551-018-0335-6
98. Carpanini SM, Torvell M, Morgan BP. Therapeutic inhibition 110. Roth JG, Brunel LG, Huang MS, et al. Spatially controlled
of the complement system in diseases of the central nervous construction of assembloids using bioprinting. Nat
system. Front Immunol. 2019;10:362. Commun. 2023;14(1):4346.
doi: 10.3389/fimmu.2019.00362 doi: 10.1038/s41467-023-40006-5
99. Hu Y, Wu Y, Gou Z, et al. 3D-engineering of cellularized 111. Ahmed T. Bio-inspired artificial synapses: neuromorphic
conduits for peripheral nerve regeneration. Sci Rep. computing chip engineering with soft biomaterials,
2016;6(1):32184. memories-materials, devices. Circuits Syst. 2023;6:100088.
doi: 10.1038/srep32184 doi: 10.1016/j.memori.2023.100088
Volume 10 Issue 6 (2024) 36 doi: 10.36922/ijb.3590

