Page 44 - IJB-10-6
P. 44

International Journal of Bioprinting                                  Bioprinting for wearable tech and robot




               for health monitoring, robotics, and prosthetics. Adv. Mater.   100. Hsu RS, Li SJ, Fang JH, et al. Wireless charging-mediated
               2019;31:1904765.                                   angiogenesis and nerve repair by adaptable microporous
               doi: 10.1002/adma.201904765                        hydrogels from conductive building blocks. Nat Commun.
                                                                  2022;13(1):5172.
            89.  Apelgren P, Amoroso M, Säljö K, et al. Long‐term  in
               vivo integrity and safety of 3D‐bioprinted cartilaginous      doi: 10.1038/s41467-022-32912-x
               constructs. J Biomed Mater Res B  Appl Biomater.   101. Fang  Y,  Wang  C,  Liu  Z,  et  al.  3D  printed  conductive
               2021;109:126-136.                                  multiscale nerve guidance conduit with hierarchical
               doi: 10.1002/jbm.b.34687                           fibers for peripheral nerve regeneration.  Adv Sci.
                                                                  2023;10(12):2205744.
            90.  Agarwala S, Lee JM, Ng WL, et al. A novel 3D bioprinted
               flexible and biocompatible hydrogel bioelectronic platform.      doi: 10.1002/advs.202205744
               Biosens Bioelectron. 2018;102:365-371.          102. Courtine G, Micera S, DiGiovanna J, et al. Brain-
               doi: 10.1016/j.bios.2017.11.039                    machine interface: closer to therapeutic reality?.  Lancet.
                                                                  2013;381(9866):515-517.
            91.  Krishnadoss V, Kanjilal B, Hesketh A, et al.  In situ 3D
               printing of implantable energy storage devices. Chem Eng J.      doi: 10.1016/S0140-6736(12)62164-3
               2021;409:128213.                                103. Zhang Q, Hu S, Talay R, et al. A prototype closed-loop
               doi: 10.1016/j.cej.2020.128213                     brain–machine interface for the study and treatment of pain.
                                                                  Nat Biomed Eng. 2023;7(4):533-545.
            92.  Lei IM, Jiang C, Lei CL, et al. 3D printed biomimetic
               cochleae and machine learning co-modelling provides      doi: 10.1038/s41551-021-00736-7
               clinical informatics for cochlear implant patients.  Nat   104. Kantawala B, Hamitoglu AE, Nohra L, et al. Microengineered
               Commun. 2021;12:6260.                              neuronal networks: enhancing brain-machine interfaces.
               doi: 10.1038/s41467-021-26491-6                    Ann Med Surg. 2024;86(6):3535-3542.
                                                                  doi: 10.1097/MS9.0000000000002130
            93.  Xu Y, Rothe R, Voigt D, et al. Convergent synthesis of
               diversified reversible network leads to liquid metal-  105. Ghafoor U, Kim S, Hong KS. Selectivity and longevity of
               containing conductive hydrogel adhesives.  Nat Commun.   peripheral-nerve and machine interfaces: a review.  Front
               2021;12(1):2407.                                   Neurorobot. 2017;11:59.
               doi: 10.1038/s41467-021-22675-2                    doi: 10.3389/fnbot.2017.00059
            94.  Chatterjee B, Mohseni P, Sen S. Bioelectronic sensor   106. Sun G, Zeng F, McCartin M, et al. Closed-loop stimulation
               nodes for the internet of bodies.  Annu Rev Biomed Eng.   using a multiregion brain-machine interface has analgesic
               2023;25:101-129.                                   effects in rodents. Sci Transl Med. 2022;14(651):eabm5868.
               doi: 10.1146/annurev-bioeng-110220-112448          doi: 10.1126/scitranslmed.abm5868
            95.  Kim Y, Alimperti S, Choi P, et al. An inkjet printed flexible   107. Adewole DO, Struzyna LA, Burrell JC, et al. Development of
               electrocorticography (ECoG) microelectrode array on a thin   optically controlled “living electrodes” with long-projecting
               parylene-C film. Sensors. 2022;22(3):1277.         axon tracts for a synaptic brain-machine interface. Sci Adv.
               doi: 10.3390/s22031277                             2021;7(4):eaay5347.
                                                                  doi: 10.1126/sciadv.aay5347
            96.  Xie M, Shi Y, Zhang C, et al. In situ 3D bioprinting with
               bioconcrete bioink. Nat Commun. 2022;13(1):3597.  108. Afanasenkau D, Kalinina D, Lyakhovetskii V, et al. Rapid
               doi: 10.1038/s41467-022-30997-y                    prototyping of soft bioelectronic implants for use as neuro-
                                                                  muscular interfaces. Nat Biomed Eng. 2020;4(10):1010-1022.
            97.  Sondell M, Lundborg G, Kanje M. Vascular endothelial
               growth  factor has  neurotrophic  activity  and  stimulates      doi: 10.1038/s41551-020-00615-7
               axonal outgrowth, enhancing cell survival and Schwann cell   109. Liu Y, Liu J, Chen S, et al. Soft and elastic hydrogel-based
               proliferation in the peripheral nervous system. J Neurosci.   microelectronics for localized low-voltage neuromodulation.
               1999;19:5731-5740.                                 Nat Biomed Eng. 2019;3(1):58-68.
               doi: 10.1523/JNEUROSCI.19-14-05731.1999            doi: 10.1038/s41551-018-0335-6
            98.  Carpanini SM, Torvell M, Morgan BP. Therapeutic inhibition   110. Roth JG, Brunel LG, Huang MS, et al. Spatially controlled
               of the complement system in diseases of the central nervous   construction of assembloids using bioprinting.  Nat
               system. Front Immunol. 2019;10:362.                Commun. 2023;14(1):4346.
               doi: 10.3389/fimmu.2019.00362                      doi: 10.1038/s41467-023-40006-5
            99.  Hu Y, Wu Y, Gou Z, et al. 3D-engineering of cellularized   111. Ahmed T. Bio-inspired artificial synapses: neuromorphic
               conduits for peripheral nerve regeneration.  Sci Rep.   computing  chip  engineering  with  soft  biomaterials,
               2016;6(1):32184.                                   memories-materials, devices. Circuits Syst. 2023;6:100088.
               doi: 10.1038/srep32184                             doi: 10.1016/j.memori.2023.100088




            Volume 10 Issue 6 (2024)                        36                                doi: 10.36922/ijb.3590
   39   40   41   42   43   44   45   46   47   48   49