Page 437 - IJB-10-6
P. 437

International Journal of Bioprinting                                 3D-bioprinted respiratory disease model




            31.  Labowska M, Cierluk K, Jankowska A, Kulbacka J, Detyna J,      doi: 10.1038/s41598-018-31880-x
               Michalak I. A review on the adaption of alginate-gelatin hydrogels   42.  Berg  J,  Weber  Z,  Fechler-Bitteti  M,  et  al.  Bioprinted  multi-cell
               for 3D cultures and bioprinting. Materials. 2021;14(4):85.
               doi: 10.3390/ma14040858                            type lung model for the study of viral inhibitors.  Viruses. 2021;
                                                                  13:1590.
            32.  Geevarghese R, Somasekharan L, Bhatt A, Kasoju N, Nair R.      doi: 10.3390/v13081590
               Development and evaluation of a multicomponent bioink consisting
               of alginate, gelatin, diethylaminoethyl cellulose and collagen   43.  Liu G, Park H, Pyo H, Liu Q, Zhou Y. Influenza A virus panhandle
               peptide for 3D bioprinting of tissue construct for drug screening   structure is directly involved in RIG-I activation and interferon
               application. Int J Biol Macromol. 2022;207:278-288.  induction. J Virol. 2015;89(11):6067-6079.
               doi: 10.1016/j.ijbiomac.2022.02.191                doi: 10.1128/JVI.00232-15
            33.  Zimmerling A, Sunil C, Zhou Y, Chen X. Development of a   44.  Panganiban R, Day R. Hepatocyte growth factor in lung repair and
               nanoparticle system for controlled release in bioprinted respiratory   pulmonary fibrosis. Acta Pharmacol Sin. 2010;32:12-20.
               scaffolds. J Funct Biomater. 2024;15:20.           doi: 10.1038/aps.2010.90
               doi: 10.3390/jfb15010020                        45.  Zimmerling A, Zhou Y, Chen X. Synthesis of alginate/collagen
            34.  Zimmerling A, Boire J, Zhou Y, Chen X. Influence of breath-  bioinks for bioprinting respiratory tissue models. J Funct Biomater.
               mimicking ventilated incubation on 3D bioprinted respiratory   2024;15:90.
               tissue scaffolds. ASME J Biomech Eng. 2024;146(9):091004.     doi: 10.3390/jfb15040090
               doi: 10.1115/1.4065214                          46.  Malekpour A, Chen X. Printability and cell viability in extrusion-
            35.  Butler D, Goldstein S, Guldberg R, et al. The impact of biomechanics   based bioprinting from experimental, computational, and machine
               in tissue engineering and regenerative medicine. Tissue Eng Part B   learning views, J Funct Biomater. 2022;13(2):40.
               Rev. 2009;15(4):477-484.                           doi: 10.3390/jfb13020040
               doi: 10.1089/ten.teb.2009.0340                  47.  Fu ZQ, Naghieh S, Xu CC, Wang CJ, Sun W, Chen XB.
            36.  Gresham R, Bahney C, Leach J. Growth factor delivery using   Printability in extrusion bioprinting.  Biofabrication. 2021;
               extracellular matrix-mimicking substrates for musculoskeletal   13(3):033001.
               tissue engineering and repair. Bioact Mater. 2021;6(7):1945-1956.     doi: 10.1088/1758-5090/abe7ab
               doi: 10.1016/j.bioactmat.2020.12.012            48.  Sousa dos Santos K, Oliveira L, de Lima Fontes M. et al. Alginate-
            37.  Nossa R, Costa J, Cacaopardo L, Ahluwalia A. Breathing in vitro:   based 3D A549 cell culture model to study paracoccidioides
               designs and applications of engineered lung models. J Tissue Eng.   infection. J. Fungi. 2023;9(6):634.
               2021;12:20417314211008696.                         doi: 10.3390/jof9060634
               doi: 10.1177/20417314211008696                  49.  Zhang J, Zhang W, Ren L, et al. Astragaloside IV attenuates IL-1β
            38.  Huang D, Liu T, Liao J, et al. Reversed-engineered human   secretion by enhancing autophagy in H1N1 infection.  Microbiol
               alveolar lung-on-a-chip model.  Proc Natl Acad Sci USA.   Letters. 2020;367(4):fnaa007.
               2021;118(19):e2016146118.                          doi: 10.1093/femsle/fnaa007
               doi: 10.1073/pnas.2016146118                    50.  Gao J, Gao L, Li R, Lai Z, Zhang Z, Fan X. Integrated analysis
            39.  Kang D, Park J, Kim W, et al. All-inkjet printed 3D alveolar barrier   of microRNA-nRNA expression in A549 cells infected with
               model with physiologically relevant microarchitecture.  Adv Sci.   influenza A viruses (IAVs) from different host species. Virus Res.
               2021;8:2004990.                                    2019;263:34-46.
               doi: 10.1002/advs.202004990                        doi: 10.1016/j.virusres.2018.12.016
            40.  Horvath L, Umehara Y, Jud C, Blank F, Petri-Fink A, Rothen-  51.  Mondrinos M, Lelkes P, Samadikuchaksaraei A, Mantalaris A, Polak
               Rutishauser  B.  Engineering  an  in  vitro  air-blood  barrier  by  3D   J. Lungs. In: Principles of Tissue Engineering (Fourth Edition). San
               bioprinting. Sci Rep. 2015;5:7974.                 Diego, USA: Academic Press/Elsevier;2014:1560-1577
               doi: 10.1038/srep07974                             doi: 10.1016/B978-0-12-398358-9.00074-4
            41.  Berg J, Hiller T, Kissner M, et al. Optimization of cell-laden bioinks   52.  Kim W, Lee Y, Kang D, Kwak T, Lee H, Jung S. 3D inkjet-bioprinted
               for 3D bioprinting and efficient infection with influenza A virus. Sci   lung-on-a-chip. ACS Biomater Sci Eng. 2023;9:2806-2815.
               Rep. 2018;8:13877.                                 doi: 10.1021/acsbiomaterials.3c00089













            Volume 10 Issue 6 (2024)                       429                                doi: 10.36922/ijb.3895
   432   433   434   435   436   437   438   439   440   441   442