Page 126 - IJB-7-1
P. 126
3D Printed PLA/HAp Biocomposites
11. Hassanajili S, Karami-Pour A, Oryan A, et al., 2019, Potential Artificial Bone Replacement. Mater Today Proc,
Preparation and Characterization of PLA/PCL/HA 2020:263.
Composite Scaffolds Using Indirect 3D Printing for Bone https://doi.org/10.1016/j.matpr.2020.07.263
Tissue Engineering. Mater Sci Eng C, 104:109960. 18. Alam F, Varadarajan KM, Kumar S, 2020, 3D Printed
https://doi.org/10.1016/j.msec.2019.109960 Polylactic Acid Nanocomposite Scaffolds for Tissue
12. Mondal S, Phuoc T, Pham VH, et al., 2019, Hydroxyapatite Engineering Applications. Polym Test, 81:106203.
Nano Bioceramics Optimized 3D Printed Poly Lactic Acid https://doi.org/10.1016/j.polymertesting.2019.106203
Scaffold for Bone Tissue Engineering Application. Ceram 19. Nawawi AN, Alqap SF, Sopyan I, 2011, Recent Progress on
Int, 46:1–13. Hydroxyapatite-based Dense Biomaterials for Load Bearing
https://doi.org/10.1016/j.ceramint.2019.10.057 Bone Substitutes. Recent Patents Mater Sci, 4:63–80.
13. Lopresti F, Pavia FC, Vitrano I, et al., 2020, Effect of https://doi.org/10.2174/1874464811104010063
Hydroxyapatite Concentration and Size on Morpho- 20. Lizundia E, Vilas JL, León LM, 2015, Crystallization,
mechanical Properties of PLA-based Randomly Oriented Structural Relaxation and Thermal Degradation in Poly(l-
and Aligned Electrospun Nanofibrous Mats. J Mech Behav lactide)/Cellulose Nanocrystal Renewable Nanocomposites.
Biomed Mater, 101:103449.
https://doi.org/10.1016/j.jmbbm.2019.103449 Carbohydr Polym, 123:256–65.
https://doi.org/10.1016/j.carbpol.2015.01.054
14. Pietrzykowska E, Mukhovskyi R, Chodara A, et al., 2019,
Composites of Polylactide and Nano-Hydroxyapatite Created 21. Xu C, Chen J, Wu D, et al., 2016, Polylactide/Acetylated
by Cryomilling and Warm Isostatic Pressing for Bone Nanocrystalline Cellulose Composites Prepared by a
Implants Applications. Mater Lett, 236:625–8. Continuous Route: A Phase Interface-property Relation
https://doi.org/10.1016/j.matlet.2018.11.018 Study. Carbohydr Polym, 146:58–66.
15. Prasad A, Bhasney S, Katiyar V, et al., 2017, Biowastes https://doi.org/10.1016/j.carbpol.2016.03.058
Processed Hydroxyapatite filled Poly (Lactic acid) Bio- 22. Gazzotti S, Farina H, Lesma G, et al., 2017, Polylactide/
Composite for Open Reduction Internal Fixation of Small Cellulose Nanocrystals: The in situ Polymerization Approach
Bones. Mater Today Proc, 4:10153–7. to Improved Nanocomposites. Eur Polym J, 94:173–84.
https://doi.org/10.1016/j.matpr.2017.06.339 https://doi.org/10.1016/j.eurpolymj.2017.07.014
16. Rodríguez K, Renneckar S, Gatenholm P, 2011, Biomimetic 23. Bhasney SM, Bhagabati P, Kumar A, et al., 2019, Morphology
Calcium Phosphate Crystal Mineralization on Electrospun and Crystalline Characteristics of Polylactic Acid [PLA]/
Cellulose-based Scaffolds. ACS Appl Mater Interfac, 3:681–9. Linear Low Density Polyethylene [LLDPE]/Microcrystalline
https://doi.org/10.1021/am100972r Cellulose [MCC] Fiber Composite. Compos Sci Technol,
17. Hamzah MSA, Ng C, Zulkarnain NI, et al., 2020, Entrapment 171:54–61.
of Collagen on Polylactic Acid 3D Scaffold Surface as a https://doi.org/10.1016/j.compscitech.2018.11.028
122 International Journal of Bioprinting (2021)–Volume 7, Issue 1

