Page 117 - IJB-7-2
P. 117

Arguchinskaya, et al.
               https://doi.org/10.1126/sciadv.aaw2459              Thermoreversible,  Photocrosslinkable  Collagen  Bio-Ink
           30.  Dong C, Lv Y, 2016, Application of Collagen Scaffold in   for Free-Form Fabrication  of Scaffolds for Regenerative
               Tissue Engineering: Recent Advances and New Perspectives.   Medicine, Technology (Singap World Sci), 5:185–95.
               Polymers, 8:42.                                     https://doi.org/10.1142/s2339547817500091
               https://doi.org/10.3390/polym8020042            39.  Diamantides N, Wang L, Pruiksma T, et al., 2017, Correlating
           31.  Lee J, Kim G, 2018,  Three-Dimensional  Hierarchical   Rheological Properties and Printability of Collagen Bioinks:
               Nanofibrous Collagen Scaffold Fabricated using Fibrillated   The  Effects  of  Riboflavin  Photocrosslinking  and  pH.
               Collagen and Pluronic F-127 for Regenerating Bone Tissue.   Biofabrication, 9:34102.
               ACS Appl Mater Interfaces, 10:35801–11.             https://doi.org/10.1088/1758-5090/aa780f
               https://doi.org/10.1021/acsami.8b14088          40.  Shi  W, Sun M, Hu X,  et al., 2017, Structurally  and
           32.  Doyle  AD, 2016, Generation  of 3D Collagen  Gels with   Functionally Optimized Silk-Fibroin-Gelatin Scaffold Using
               Controlled  Diverse  Architectures.  Curr Protoc  Cell  Biol,   3D Printing to Repair Cartilage Injury In Vitro and In Vivo.
               72:10.20.1–16.                                      Adv Mater, 29: 1701089.
           33.  Naciri M, Kuystermans D, Al-Rubeai M, 2008, Monitoring   https://doi.org/10.1002/adma.201701089
               pH and Dissolved Oxygen in Mammalian Cell Culture Using   41.  Setayeshmehr  M,  Esfandiari  E,  Rafieinia  M,  et al., 2019,
               Optical Sensors. Cytotechnology, 57:245–50.         Hybrid and Composite  Scaffolds Based  on Extracellular
               https://doi.org/10.1007/s10616-008-9160-1           Matrices for Cartilage Tissue Engineering. Tissue Eng Part B
           34.  Kim YB, Lee H, Kim GH, 2016, Strategy to Achieve Highly   Rev, 25:202–24.
               Porous/Biocompatible  Macroscale  Cell  Blocks,  using a   https://doi.org/10.1089/ten.teb.2018.0245
               Collagen/Genipin-Bioink  and an Optimal  3D Printing   42.  Fitzsimmons R,  Aquilino MS,  Quigley J,  et al., 2018,
               Process. ACS Appl Mater Interfaces, 8:32230–40.     Generating  Vascular Channels within Hydrogel Constructs
               https://doi.org/10.1021/acsami.6b11669              using an Economical  Open-Source  3D Bioprinter  and
           35.  Lee J, Yeo M, Kim W, et al., 2018, Development of a Tannic   Thermoreversible Gels. Bioprinting, 9:7–18.
               Acid Cross-Linking Process for Obtaining 3D Porous   https://doi.org/10.1016/j.bprint.2018.02.001
               Cell-Laden  Collagen Structure.  Int J Biol  Macromol, 110:   43.  Kolesky DB,  Truby RL, Gladman  AS,  et al., 2014, 3D
               497–503.                                            Bioprinting  of  Vascularized,  Heterogeneous Cell-Laden
               https://doi.org/10.1016/j.ijbiomac.2017.10.105      Tissue Constructs. Adv Mater, 26:3124–30.
           36.  Peng YY, Glattauer V, Ramshaw JA, 2017, Stabilisation of   https://doi.org/10.1002/adma.201305506
               Collagen  Sponges by Glutaraldehyde Vapour Crosslinking,   44.  Paulsen SJ, Miller JS, 2015, Tissue Vascularization through
               Int J Biomater, 2017:8947823.                       3D Printing:  Will  Technology  Bring us Flow?  Dev Dyn,
               https://doi.org/10.1155/2017/8947823                244:629–40.
           37.  Mu  C, Liu  F,  Cheng  Q,  et  al.,  2010, Collagen  Cryogel   https://doi.org/10.1002/dvdy.24254
               Cross-Linked by Dialdehyde Starch. Macromol Mater Eng,   45.  Kim HD, Lee  Y, Kim  Y,  et  al., 2017, Biomimetically
               295:100–7.                                          Reinforced  Polyvinyl  Alcohol-Based  Hybrid Scaffolds  for
               https://doi.org/10.1002/mame.200900292              Cartilage Tissue Engineering. Polymers, 9:655.
           38.  Drzewiecki  KE, Malavade  JN,  Ahmed I,  et al.,  2017, A   https://doi.org/10.3390/polym9120655




















                                       International Journal of Bioprinting (2021)–Volume 7, Issue 2       113
   112   113   114   115   116   117   118   119   120   121   122