Page 116 - IJB-7-2
P. 116

Technique of Thyroid Cartilage Scaffold Support Formation
               https://doi.org/10.1038/s41467-018-04517-w          https://doi.org/10.1088/1757-899x/301/1/012018
           8.   Onofrillo C, Duchi S, O’Connell CD,  et al., 2018,   19.  Omori K, Tada Y, Suzuki T, et al., 2008, Clinical Application
               Biofabrication of Human Articular Cartilage: A Path towards   of In Situ Tissue Engineering using a Scaffolding Technique
               the Development of a Clinical  Treatment.  Biofabrication,   for Reconstruction of the  Larynx  and  Trachea.  Ann Otol
               10:45006.                                           Rhinol Laryngol, 117:673–8.
               https://doi.org/10.1088/1758-5090/aad8d9            https://doi.org/10.1177/000348940811700908
           9.   Kajave  NS, Schmitt  T, Nguyen  TU,  et  al., 2020, Dual   20.  Hinton  TJ, Jallerat  Q, Palchesko RN,  et al.,  2015, Three-
               Crosslinking Strategy to Generate Mechanically Viable Cell-  Dimensional Printing of Complex Biological Structures by
               Laden Printable Constructs using Methacrylated  Collagen   Freeform Reversible Embedding of Suspended Hydrogels.
               Bio-Inks. Mater Sci Eng C Mater Biol Appl, 107:110290.  Sci Adv, 1:e1500758.
               https://doi.org/10.1016/j.msec.2019.110290          https://doi.org/10.1126/sciadv.1500758
           10.  Park JH,  Hong JM,  Ju YM,  et al., 2015, A Novel Tissue-  21.  Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D Bioprinting
               Engineered Trachea With a Mechanical Behavior Similar to   of Collagen to Rebuild  Components of the Human Heart.
               Native Trachea. Biomaterials, 62:106–15.            Science, 365:482–7.
               https://doi.org/10.1016/j.biomaterials.2015.05.008  22.  Bhattacharjee T, Zehnder SM, Rowe KG, et al., 2015, Writing
           11.  Gao M, Zhang H, Dong W, et al., 2017, Tissue-Engineered   in the Granular Gel Medium. Sci Adv, 1:e1500655.
               Trachea  from  a  3D-Printed  Scaffold  Enhances  Whole-  https://doi.org/10.1126/sciadv.1500655
               Segment Tracheal Repair. Sci Rep, 7:5246.       23.  Wu  W, DeConinck  A, Lewis JA, 2011, Omnidirectional
               https://doi.org/10.1038/s41598-017-05518-3          Printing  of 3D Microvascular  Networks.  Adv  Mater,
           12.  Osidak EO, Karalkin PA, Osidak MS, et al., 2019, Viscoll   23:H178–83.
               Collagen  Solution as a Novel Bio-Ink for Direct  3D Bio-  https://doi.org/10.1002/adma.201004625
               Printing. J Mater Sci Mater Med, 30:31.         24.  Lee  W, Lee  V, Polio S,  et  al., 2010, On-Demand  Three-
           13.  Yang  LJ,  Lin WZ, Yao TJ,  et al., 2003, Photo-Patternable   Dimensional  Freeform Fabrication of Multi-Layered
               Gelatin  as Protection  Layers  in  Low-Temperature  Surface   Hydrogel Scaffold with Fluidic Channels. Biotechnol Bioeng,
               Micromachinings. Sens Actuators A Phys, 103:284–9.  105:1178–86.
               https://doi.org/10.1016/s0924-4247(02)00338-2       https://doi.org/10.1002/bit.22613
           14.  Gartland  A,  Mechler  J, Mason-Savas  A,  et  al.,  2005,   25.  Miller JS, Stevens KR, Yang MT, et al., 2012, Rapid Casting
               In Vitro Chondrocyte  Differentiation  using Costochondral   of Patterned  Vascular Networks for Perfusable Engineered
               Chondrocytes  as a  Source  of Primary  Rat  Chondrocyte   Three-Dimensional Tissues. Nat Mater, 11(9):768–74.
               Cultures:  An Improved  Isolation and Cryopreservation   https://doi.org/10.1038/nmat3357
               Method. Bone, 37:530–44.                        26.  Bertassoni LE, Cecconi  M, Manoharan  V,  et al., 2014,
               https://doi.org/10.1016/j.bone.2005.04.034          Hydrogel  Bioprinted  Microchannel  Networks  for
           15.  Gosset M, Berenbaum F,  Thirion S,  et al., 2008, Primary   Vascularization of Tissue Engineering Constructs. Lab Chip,
               Culture  and Phenotyping of Murine Chondrocytes.  Nat   14:2202–11.
               Protoc, 3:1253–60.                                  https://doi.org/10.1039/c4lc00030g
               https://doi.org/10.1038/nprot.2008.95           27.  Lee VK, Kim DY, Ngo H, et al., 2014, Creating Perfused
           16.  Apelgren P, Amoroso M, Lindahl A, et al., 2017, Chondrocytes   Functional  Vascular  Channels  using  3D Bio-Printing
               and Stem Cells in 3D-Bioprinted Structures Create Human   Technology. Biomaterials, 35:8092–102.
               Cartilage In Vivo. PLoS One, 12:e0189428.           https://doi.org/10.1016/j.biomaterials.2014.05.083
               https://doi.org/10.1371/journal.pone.0189428    28.  Lee  VK, Lanzi AM, Haygan N,  et al., 2014, Generation of
           17.  Jung CS, Kim BK,  Lee J,  et al., 2017, Development of   Multi-Scale  Vascular  Network System within 3D  Hydrogel
               Printable Natural Cartilage Matrix Bio-Ink for 3D Printing of   using 3D Bio-Printing Technology. Cell Mol Bioeng, 7:460–72.
               Irregular Tissue Shape. Tissue Eng Regen Med, 15:155–62.  https://doi.org/10.1007/s12195-014-0340-0
               https://doi.org/10.1007/s13770-017-0104-8       29.  Skylar-Scott MA, Uzel SG, Nam LL,  et al., 2019,
           18.  Sun N, Shib T, Fanc Y, et al., 2018, Experimental Study on   Biomanufacturing  of  Organ-Specific  Tissues  with  High
               3D Chi-Hap Scaffolds for Thyroid Cartilage Repairing. IOP   Cellular Density and Embedded Vascular Channels. Sci Adv,
               Conf Ser Mater Sci Eng, 301:012018.                 5:eaaw2459.

           112                         International Journal of Bioprinting (2021)–Volume 7, Issue 2
   111   112   113   114   115   116   117   118   119   120   121