Page 43 - IJB-7-4
P. 43

Lu, et al.
               of Bolus Material. Phys Med Biol, 53:2593–606.      Applications of 3-Dimensional Printing in Radiation Therapy.
               https://doi.org/10.1088/0031-9155/53/10/010         Med Dosim, 42:150–5.
           5.   Aras S, Tanzer İO, 2020, Dosimetric comparison of superflab   16.  Tino R, Leary M, Yeo A, et al., 2020, Additive Manufacturing
               and specially prepared bolus materials used in radiotherapy   in Radiation  Oncology:  A  Review of Clinical  Practice,
               practice. Eur J Breast Health, 16:167–70.           Emerging Trends and Research Opportunities. Int J Extrem
               https://doi.org/10.5152/ejbh.2020.5041              Manuf, 2:012003.
           6.   Khan  Y,  Villarreal-Barajas  JE,  Udowicz  M,  et  al., 2013,      https://doi.org/10.1088/2631-7990/ab70af
               Clinical  and  Dosimetric  Implications  of Air  Gaps  between   17.  Walker  M,  Cohen  N,  Menchaca  D,  2005,  Play-Doh
               Bolus and Skin Surface during Radiation Therapy. J Cancer   and  Water-Soaked  Gauze  Sponges  as  Alternative  Bolus
               Ther, 4:1251–5.                                     Material For Cobalt-60 Teletherapy. Vet Radiol Ultrasound,
               https://doi.org/10.4236/jct.2013.47147              46:179–81.
           7.   Hou Y, Song Y, Sun X, et al., 2020, Multifunctional Composite      https://doi.org/10.1111/j.1740-8261.2005.00033.x
               Hydrogel Bolus with Combined Self-Healing, Antibacterial   18.  Vyas  V,  Palmer  L,  Mudge  R,  et  al., 2013, On Bolus for
               and Adhesive Functions for Radiotherapy. J Mater Chem B,   Megavoltage Photon and Electron Radiation Therapy. Med
               8:2627–35.                                          Dosim, 38:268–73.
               https://doi.org/10.1039/c9tb02967b                  https://doi.org/10.1016/j.meddos.2013.02.007
           8.   Dipasquale G, Poirier A, Sprunger Y, et al., 2018, Improving   19.  Rus D, Tolley MT, 2015, Design, Fabrication and Control of
               3D-Printing  of Megavoltage  X-Rays Radiotherapy  Bolus   soft Robots. Nature, 521:467–75.
               with Surface-Scanner. Radiat Oncol, 13:203.         https://doi.org/10.1038/nature14543
               https://doi.org/10.1186/s13014-018-1148-1       20.  Benoit J, Pruitt AF, Thrall DE, 2009, Effect of Wetness Level
           9.   Baltz  GC,  Chi  PM,  Wong  PF,  et  al., 2019, Development   on the Suitability of Wet Gauze as a Substitute for Superflab
               and  Validation  of  a  3D-Printed  Bolus  Cap  for  Total  Scalp   as a Bolus Material for use with 6mv Photons. Vet Radiol
               Irradiation. J Appl Clin Med Phys, 20:89–96.        Ultrasound, 50:555–9.
               https://doi.org/10.1002/acm2.12552                  https://doi.org/10.1111/j.1740-8261.2009.01573.x
           10.  Kong Y, Yan T, Sun Y, et al., 2019, A Dosimetric Study on the   21.  Reft CS, 1989, Output Calibration in Solid Water for High
               Use of 3D-Printed Customized Boluses in Photon Therapy:   Energy Photon Beams. Med Phys, 16:299–301.
               A  Hydrogel  and  Silica  Gel  Study.  J  Appl  Clin  Med Phys,      https://doi.org/10.1118/1.596423
               20:348–55.                                      22.  Kim SW, Shin HJ, Kay CS, et al., 2014, A customized Bolus
               https://doi.org/10.1002/acm2.12489                  Produced Using a 3-Dimensional Printer for Radiotherapy.
           11.  Robar JL, Moran K, Allan J, et al., 2018, Intrapatient Study   PLoS One, 9:e110746.
               Comparing  3D  Printed  Bolus  Versus  Standard  Vinyl  Gel      https://doi.org/10.1371/journal.pone.0110746
               Sheet  Bolus  for  Postmastectomy  Chest  Wall  Radiation   23.  Lukowiak M, Jezierska K, Boehlke M, et al., 2017, Utilization
               Therapy. Pract Radiat Oncol, 8:221–9.               of a 3D Printer to Fabricate Boluses used for Electron Therapy
               https://doi.org/10.1016/j.prro.2017.12.008          of Skin Lesions of the Eye Canthi. J Appl Clin Med Phys,
           12.  Aoyama  T,  Uto  K,  Shimizu  H,  et  al.,  2020,  Physical  and   18:76–81.
               Dosimetric  Characterization  of  Thermoset  Shape  Memory   24.  Park SY, Choi CH, Park JM, et al., 2016, A Patient-Specific
               Bolus Developed for Radiotherapy. Med Phys, 47:6103–12.  Polylactic Acid Bolus Made by a 3D Printer for Breast Cancer
               https://doi.org/10.1002/mp.14516                    Radiation Therapy. PLoS One, 11:e0168063.
           13.  Asfia A, Novak JI, Mohammed MI, et al., 2020, A Review      https://doi.org/10.1371/journal.pone.0168063
               of  3D  Printed  Patient  Specific  Immobilisation  Devices  in   25.  Banerjee SL, Samanta S, Sarkar S, et al., 2020, A Self-Healable
               Radiotherapy. Phys Imaging Radiat Oncol, 13:30–5.   and Antifouling Hydrogel Based on PDMS Centered ABA
               https://doi.org/10.1016/j.phro.2020.03.003          Tri-Block  Copolymer  Polymersomes: A  Potential  Material
           14.  Zemnick  C,  Woodhouse  SA,  Gewanter  RM,  et  al.,  2007,   for Therapeutic Contact Lenses. J Mater Chem B, 8:226–43.
               Rapid Prototyping Technique for Creating a Radiation Shield.      https://doi.org/10.1039/c9tb00949c
               J Prosthet Dent, 97:236–41.                     26.  Chiu T, Tan J, Brenner M, et al., 2018, Three-Dimensional
               https://doi.org/10.1016/j.prosdent.2007.02.005      Printer-Aided Casting of Soft, Custom Silicone Boluses
           15.  Zhao Y, Moran K, Yewondwossen M, et al., 2017, Clinical   (SCSBs) for Head and Neck Radiation Therapy. Pract Radiat

                                       International Journal of Bioprinting (2021)–Volume 7, Issue 4        39
   38   39   40   41   42   43   44   45   46   47   48