Page 141 - IJB-8-1
P. 141

Yang, et al.
               https://doi.org/10.1016/j.msec.2019.110289          Mechanical Characteristics and Microstructure of Ti6Al7Nb
           42.  Eichi T, Hiroko T, Hideaki I, et al., 1997, Pore Size of Porous   Lattice Structures Manufactured by Selective Laser Melting.
               Hydroxyapatite  as the  Cell-substratum  Controls  BMP-  Materials, 13:4123.
               induced Osteogenesis. J Biochem, 121:317–24.        https://doi.org/10.3390/ma13184123
               https://doi.org/10.1093/oxfordjournals.jbchem.a021589  52.  Shin J, Kim S, Jeong D, et al., 2012, Finite Element Analysis
           43.  Karageorgiou V, Kaplan D, 2005, Porosity of 3D Biomaterial   of Schwarz P Surface Pore Geometries for Tissue-engineered
               Scaffolds and Osteogenesis. Biomaterials, 26:5474–91.  Scaffolds. Math Probl Eng, 2012:865–83.
               https://doi.org/10.1016/j.biomaterials.2005.02.002     https://doi.org/10.1155/2012/694194
           44.  Niinomi M, Nakai M, 2011, Titanium-based Biomaterials for   53.  Soro N, Brassart L, Chen  Y,  et al.,  2018,  Finite  Element
               Preventing  Stress Shielding  Between Implant  Devices  and   Analysis of Porous Commercially Pure  Titanium  for
               Bone. Int J Biomater, 2011:836587.                  Biomedical  Implant  Application.  Mat Sci  Eng  A Struct,
               https://doi.org/10.1155/2011/836587                 725:43–50.
           45.  Ahmadi S, Campoli G, Yavari SA, et al., 2014, Mechanical      https://doi.org/10.1016/j.msea.2018.04.009
               Behavior of Regular Open-cell Porous Biomaterials Made of   54.  Zhang B, Pei X, Zhou C, et al., 2018, The Biomimetic Design
               Diamond Lattice Unit Cells. J Mech Behav Biomed Mater,   and 3D Printing of Customized Mechanical Properties Porous
               34:106–15.                                          Ti6Al4V  Scaffold  for  Load-bearing  Bone  Reconstruction.
               https://doi.org/10.1016/j.jmbbm.2014.02.003         Mater Des, 152:30–9.
           46.  Li ZH, Nie YF, Liu B, et al., 2020, Mechanical Properties of      https://doi.org/10.1016/j.matdes.2018.04.065
               AlSi10Mg Lattice Structures Fabricated by Selective Laser   55.  Du Y, Liang H, Xie D, et al., 2019, Finite Element Analysis
               Melting. Mater Des, 192:108709.                     of Mechanical  Behavior, Permeability of Irregular Porous
               https://doi.org/10.1016/j.matdes.2020.108709        Scaffolds  and  Lattice-based  Porous  Scaffolds.  Mater  Res
           47.  Petit C, Maire E, Meille S, et al., 2016, CoCrMo Cellular   Express, 6:105407.
               Structures Made by Electron Beam Melting Studied by Local      https://doi.org/10.1088/2053-1591/ab3ac1
               Tomography and Finite Element Modelling. Mater Charact,   56.  Patel  R,  Lu  M,  Diermann  SH,  et al.,  2019,  Deformation
               116:48–54.                                          Behavior of Porous PHBV Scaffold in Compression: A Finite
               https://doi.org/10.1016/j.matchar.2016.04.006       Element Analysis Study. J Mech Behav Biomed Mater, 96:1–8.
           48.  Yang A, Wen C, Hodgson PD, et al., 2012, Investigation of      https://doi.org/10.1016/j.jmbbm.2019.04.030
               Cell Shape Effect on the Mechanical Behaviour of Open-cell   57.  Peng WM, Liu YF, Jiang XF, et al., 2019, Bionic Mechanical
               Metal Foams. Comp Mater Sci, 55:1–9.                Design and 3D Printing of Novel Porous Ti6Al4V Implants for
               https://doi.org/10.1016/j.commatsci.2011.11.030     Biomedical Applications. J Zhejiang Univ Sci B, 20:647–59.
           49.  Li S, Xu Q, Wang Z, et al., 2014, Influence of Cell Shape on      https://doi.org/10.1631/jzus.B1800622
               Mechanical Properties of Ti-6Al-4V Meshes Fabricated by   58.  Yang L,  Yan C, Cao  W,  et al.,  2019,  Compression-
               Electron Beam Melting Method. Acta Biomater, 10:4537–47.  Compression Fatigue Behaviour of Gyroid-type  Triply
               https://doi.org/10.1016/j.actbio.2014.06.010        Periodic  Minimal  Surface  Porous Structures  Fabricated  by
           50.  Zhang MK, Yang YQ, Wang D, et al., 2019, Microstructure   Selective Laser Melting. Acta Mater, 181:49–66.
               and  Mechanical  Properties  of  CuSn/18Ni300  Bimetallic      https://doi.org/10.1016/j.actamat.2019.09.042
               Porous Structures Manufactured by Selective Laser Melting.   59.  Zhao L, Pei X, Jiang L, et al., 2019, Bionic Design and 3D
               Mater Des, 165:107583.                              Printing of Porous Titanium Alloy Scaffolds for Bone Tissue
               https://doi.org/10.1016/j.matdes.2019.107583        Repair. Compos Part B Eng, 162:154–61.
           51.  Cosma  C,  Drstvensek  I,  Berce  P,  et al.,  2020,  Physical-     https://doi.org/10.1016/j.compositesb.2018.10.094





                                                               Publisher’s note
                                                               Whioce  Publishing remains neutral  with regard to
                                                               jurisdictional claims in published maps and institutional
                                                               affiliations.

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 1       127
   136   137   138   139   140   141   142   143   144   145   146