Page 139 - IJB-8-1
P. 139

Yang, et al.
           supervised this research. F.Z. and H.C.  collected  and   Coatings Produced by the Kinetic Spray Process.  J  Therm
           reviewed the detailed research results. S.Z. proposed the   Spray Techn, 13:265–73.
           porous structure design and created the 3D models.      https://doi.org/10.1361/10599630419418
           References                                          11.  Bobyn  JD,  Stackpool  GJ,  Hacking  SA,  et  al., 1999,
                                                                   Characteristics of Bone Ingrowth and Interface Mechanics of
           1.   Matsuno  H,  Yokoyama  A,  Watari  F,  et  al.,  2001,   a New Porous Tantalum Biomaterial. J Bone Joint Surg Br,
               Biocompatibility  and Osteogenesis of Refractory Metal   81:907.
               Implants,  Titanium,  Hafnium, Niobium,  Tantalum  and      https://doi.org/10.1302/0301-620X.81B5.9283
               Rhenium. Biomaterials, 22:1253–62.              12.  Jenkins DR, Odland AN, Sierra RJ, et al., 2017, Minimum
               https://doi.org/10.1016/S0142-9612(00)00275-1       Five-Year Outcomes with Porous Tantalum Acetabular Cup
           2.   Ruperez E, Manero JM, Riccardi K, et al., 2015, Development   and  Augment Construct in Complex Revision  Total Hip
               of Tantalum Scaffold for Orthopedic Applications Produced   Arthroplasty. J Bone Joint Surg Am, 99:7.
               by Space-holder Method. Mater Des, 83:112–19.       https://doi.org/10.2106/JBJS.16.00125
               https://doi.org/10.1016/j.matdes.2015.05.067    13.  Huang W, Gong X, Sandiford TE, et al., 2019, Outcome after
           3.   Wang Q, Qiao  YQ, Cheng  MQ,  et  al.,  2016,  Tantalum   a New Porous Tantalum Rod Implantation for Treatment of
               Implanted  Entangled  Porous  Titanium  Promotes Surface   Early-stage Femoral Head Osteonecrosis. Ann Transl Med,
               Osseointegration and Bone Ingrowth. Sci Rep, 6:13.  7:11.
               https://doi.org/10.1038/srep26248                   https://doi.org/10.21037/atm.2019.08.86
           4.   Hacking S, Bobyn J, Toh KK, et al., 2000, Fibrous Tissue   14.  Peng K, Wang Y, Zhu J, et al., 2020, Repair of Non-traumatic
               Ingrowth and  Attachment  to Porous  Tantalum.  J  Biomed   Femoral Head Necrosis by Marrow Core Decompression
               Mater Res, 52:631–8.                                with Bone Grafting and Porous Tantalum Rod Implantation.
               https://doi.org/10.1002/1097-4636(20001215)52:4<631:   Pak J Med Sci, 36:1392.
               AID-JBM7>3.0.CO;2-6                                 https://doi.org/10.12669/pjms.36.6.2176
           5.   Wauthle R, van der Stok J, Yavari SA, et al., 2015, Additively   15.  Zhou  YS,  Zhu  YC,  2013,  Three-dimensional  Ta  Foams
               Manufactured Porous  Tantalum  Implants.  Acta Biomater,   Produced by Replication of NaCl Space-holders. Mater Lett,
               14:217–25.                                          99:8–10.
               https://doi.org/10.1016/j.actbio.2014.12.003        https://doi.org/10.1016/j.matlet.2013.02.068
           6.   Bandyopadhyay A, Mitra I, Shivaram A, et al., 2019, Direct   16.  Wang  H,  Li  QJ,  Wang  Q,  et al.,  2017,  Enhanced  Repair
               Comparison  of  Additively  Manufactured  Porous  Titanium   of Segmental  Bone Defects  in Rabbit  Radius by Porous
               and Tantalum  Implants Towards  In Vivo Osseointegration.   Tantalum Scaffolds Modified with the RGD Peptide. J Mater
               Addit Manuf, 28:259–66.                             Sci-Mater Med, 28:10.
               https://doi.org/10.1016/j.addma.2019.04.025         https://doi.org/10.1007/s10856-017-5860-4
           7.   Wang  H,  Su  KX,  Su  LZ,  et al.,  2019,  Comparison  of   17.  Sukumar VR, Golla BR, Shaik MA, et al., 2019, Modeling
               3D-printed  Porous  Tantalum  and  Titanium  Scaffolds  on   and  Characterization  of  Porous  Tantalum  Scaffolds.  Trans
               Osteointegration and Osteogenesis. Mater Sci Eng C Mater   Indian Inst Met, 72:935–49.
               Biol Appl, 104:9.                                   https://doi.org/10.1007/s12666-018-01556-1
               https://doi.org/10.1016/j.msec.2019.109908      18.  Maconachie T, Leary M, Lozanovski B, et al., 2019, SLM
           8.   Dou  XJ,  Wei  XW,  Liu  G,  et al.,  2019,  Effect  of  Porous   Lattice Structures: Properties, Performance, Applications and
               Tantalum  on  Promoting  the  Osteogenic  Differentiation  of   Challenges. Mater Des, 183:108137.
               Bone Marrow Mesenchymal Stem Cells In Vitro through the      https://doi.org/10.1016/j.matdes.2019.108137
               MAPK/ERK Signal Pathway. J Orthop Transl, 19:81–93.  19.  Gong  H,  Rafi  K,  Gu  H,  et al.,  2014,  Analysis  of  Defect
               https://doi.org/10.1016/j.jot.2019.03.006           Generation  in  Ti-6Al-4V  Parts  Made  Using  Powder  Bed
           9.   Guo Y, Xie K, Jiang WB, et al., 2019, In Vitro and In Vivo   Fusion  Additive  Manufacturing  Processes.  Addit Manuf,
               Study of 3D-Printed Porous Tantalum Scaffolds for Repairing   1:87–98.
               Bone Defects. ACS Biomater Sci Eng, 5:1123–33.      https://doi.org/10.1016/j.addma.2014.08.002
               https://doi.org/10.1021/acsbiomaterials.8b01094  20.  Sing  SL,  Kuo  CN,  Shih  CT,  et al.,  2021,  Perspectives  of
           10.  Van Steenkiste T, Gorkiewicz D, 2004, Analysis of Tantalum   Using Machine Learning in Laser Powder Bed Fusion

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 1       125
   134   135   136   137   138   139   140   141   142   143   144