Page 140 - IJB-8-1
P. 140
Compression Failure of Trabecular Tantalum Scaffolds
for Metal Additive Manufacturing. Virtual Phys Prototy, Properties of Tantalum Scaffolds. J Biomed Mater Res B,
16:372–86. 73:315–24.
https://doi.org/10.1080/17452759.2021.1944229 https://doi.org/10.1002/jbm.b.30229
21. Qin YC, Qi QF, Shi PZ, et al., 2021, Automatic Determination 31. Martens M, Van Audekercke R, Delport P, et al., 1983, The
of Part Build Orientation for Laser Powder Bed Fusion. Mechanical Characteristics of Cancellous Bone at the Upper
Virtual Phys Prototype, 16:29–49. Femoral Region. J Biomech, 16:971–83.
https://doi.org/10.1080/17452759.2020.1832793 https://doi.org/10.1016/0021-9290(83)90098-2
22. Sing SL, Huang S, Goh GD, et al., 2021, Emerging Metallic 32. Turner CH, Cowin SC, Rho JY, et al., 1990, The Fabric
Systems for Additive Manufacturing: In-Situ Alloying and Dependence of the Orthotropic Elastic Constants of
Multi-metal Processing in Laser Powder Bed Fusion. Prog Cancellous Bone. J Biomech, 23:549–61.
Mater Sci, 119:100795. https://doi.org/10.1016/0021-9290(90)90048-8
https://doi.org/10.1016/j.pmatsci.2021.100795 33. Keaveny TM, Morgan EF, Niebur GL, et al., 2001,
23. Liu R, Chen Y, Liu Y, et al., 2021, Topological Design Biomechanics of Trabecular Bone. Annu Rev Biomed Eng,
of a Trabecular Bone Structure With Morphology and 3:307–33.
Mechanics Control for Additive Manufacturing. IEEE 34. Renders G, Mulder L, Van Ruijven L, et al., 2007, Porosity of
Access, 9:11123–33. Human Mandibular Condylar Bone. J Anat, 210:239–48.
https://doi.org/10.1109/ACCESS.2021.3050745 https://doi.org/10.1111/j.1469-7580.2007.00693.x
24. Wang GJ, Shen LD, Zhao JF, et al., 2018, Design and 35. Yang E, Leary M, Lozanovski B, et al., 2019, Effect of
Compressive Behavior of Controllable Irregular Porous Geometry on the Mechanical Properties of Ti-6Al-4V Gyroid
Scaffolds: Based on Voronoi-Tessellation and for Additive Structures Fabricated Via SLM: A Numerical Study. Mater
Manufacturing. ACS Biomater Sci Eng, 4:719–27. Des, 184:108165.
https://doi.org/10.1021/acsbiomaterials.7b00916 https://doi.org/10.1016/j.matdes.2019.108165
25. Yang JZ, Jin X, Gao HR, et al., 2020, Additive Manufacturing 36. Ghouse S, Babu S, Nai K, et al., 2018, The Influence of Laser
of Trabecular Tantalum Scaffolds by Laser Powder Bed Parameters, Scanning Strategies and Material on the Fatigue
Fusion: Mechanical Property Evaluation and Porous Structure Strength of a Stochastic Porous Structure. Addit Manuf,
Characterization. Mater Charact, 170:110694. 22:290–301.
https://doi.org/10.1016/j.matchar.2020.110694 https://doi.org/10.1016/j.addma.2018.05.024
26. Huang S, Narayan RL, Tan JH, et al., 2021, Resolving 37. Sing SL, Wiria FE, Yeong WY, 2018, Selective Laser
the Porosity-unmelted Inclusion Dilemma during In-Situ Melting of Lattice Structures: A Statistical Approach to
Alloying of Ti34Nb Via Laser Powder Bed Fusion. Acta Manufacturability and Mechanical Behavior. Robot Cim Int
Mater, 204:116522. Manuf, 49:170–180.
https://doi.org/10.1016/j.actamat.2020.116522 https://doi.org/10.1016/j.rcim.2017.06.006
27. Nadammal N, Mishurova T, Fritsch T, et al., 2021, Critical 38. Huang S, Sing SL, de Looze G, et al., 2020, Laser Powder
Role of Scan Strategies on the Development of Microstructure, Bed Fusion of Titanium-tantalum Alloys: Compositions and
Texture, and Residual Stresses during Laser Powder Bed Designs for Biomedical Applications. J Mech Behav Biomed
Fusion Additive Manufacturing. Addit Manuf, 38:101792. Mater, 108:103775.
https://doi.org/10.1016/j.addma.2020.101792 https://doi.org/10.1016/j.jmbbm.2020.103775
28. Chen HS, Li QJ, Liu G, 2011, The Development Status 39. Petite H, Viateau V, Bensaid W, et al., 2000, Tissue-engineered
and Trend of Environmental Friendly Vacuum Pressure Bone Regeneration. Nat Biotechnol, 18:959–63.
Impregnation Resin at Home and Abroad. Insul Mater, 2. https://doi.org/10.1038/79449
https://doi.org/10.16790/j.cnki.1009-9239.im.2011.02.010 40. Hollister SJ, 2005, Porous Scaffold Design for Tissue
29. Škoro G, Bennett J, Edgecock T, et al., 2011, Dynamic Young’s Engineering. Nat Mater, 4:518–24.
Moduli of Tungsten and Tantalum at High Temperature and https://doi.org/10.1038/nmat1683
Stress. J Nucl Mater, 409:40–6. 41. Chen Z, Yan X, Yin S, et al., 2020, Influence of the Pore
https://doi.org/10.1016/j.jnucmat.2010.12.222 Size and Porosity of Selective Laser Melted Ti6Al4V ELI
30. Shimko DA, Shimko VF, Sander EA, et al., 2005, Effect of Porous Scaffold on Cell Proliferation, Osteogenesis and Bone
Porosity on the Fluid Flow Characteristics and Mechanical Ingrowth. Mat Sci Eng C Mater, 106:110289.
126 International Journal of Bioprinting (2022)–Volume 8, Issue 1

