Page 140 - IJB-8-1
P. 140

Compression Failure of Trabecular Tantalum Scaffolds
               for Metal  Additive Manufacturing.  Virtual Phys Prototy,   Properties  of  Tantalum  Scaffolds.  J  Biomed  Mater  Res  B,
               16:372–86.                                          73:315–24.
               https://doi.org/10.1080/17452759.2021.1944229       https://doi.org/10.1002/jbm.b.30229
           21.  Qin YC, Qi QF, Shi PZ, et al., 2021, Automatic Determination   31.  Martens M, Van Audekercke R, Delport P, et al., 1983, The
               of Part  Build Orientation  for Laser Powder Bed Fusion.   Mechanical Characteristics of Cancellous Bone at the Upper
               Virtual Phys Prototype, 16:29–49.                   Femoral Region. J Biomech, 16:971–83.
               https://doi.org/10.1080/17452759.2020.1832793       https://doi.org/10.1016/0021-9290(83)90098-2
           22.  Sing SL, Huang S, Goh GD, et al., 2021, Emerging Metallic   32.  Turner  CH, Cowin SC, Rho JY,  et  al.,  1990,  The  Fabric
               Systems for Additive Manufacturing:  In-Situ Alloying  and   Dependence of the Orthotropic Elastic  Constants of
               Multi-metal Processing in Laser Powder Bed Fusion. Prog   Cancellous Bone. J Biomech, 23:549–61.
               Mater Sci, 119:100795.                              https://doi.org/10.1016/0021-9290(90)90048-8
               https://doi.org/10.1016/j.pmatsci.2021.100795   33.  Keaveny  TM, Morgan  EF, Niebur  GL,  et  al.,  2001,
           23.  Liu R, Chen  Y, Liu  Y,  et al.,  2021,  Topological  Design   Biomechanics of Trabecular Bone. Annu Rev Biomed Eng,
               of a  Trabecular Bone Structure  With Morphology and   3:307–33.
               Mechanics Control for  Additive Manufacturing.  IEEE   34.  Renders G, Mulder L, Van Ruijven L, et al., 2007, Porosity of
               Access, 9:11123–33.                                 Human Mandibular Condylar Bone. J Anat, 210:239–48.
               https://doi.org/10.1109/ACCESS.2021.3050745         https://doi.org/10.1111/j.1469-7580.2007.00693.x
           24.  Wang GJ,  Shen LD, Zhao JF,  et al.,  2018,  Design  and   35.  Yang  E,  Leary  M,  Lozanovski  B,  et  al.,  2019,  Effect  of
               Compressive Behavior of Controllable  Irregular Porous   Geometry on the Mechanical Properties of Ti-6Al-4V Gyroid
               Scaffolds:  Based  on  Voronoi-Tessellation  and  for Additive   Structures Fabricated Via SLM: A Numerical Study. Mater
               Manufacturing. ACS Biomater Sci Eng, 4:719–27.      Des, 184:108165.
               https://doi.org/10.1021/acsbiomaterials.7b00916     https://doi.org/10.1016/j.matdes.2019.108165
           25.  Yang JZ, Jin X, Gao HR, et al., 2020, Additive Manufacturing   36.  Ghouse S, Babu S, Nai K, et al., 2018, The Influence of Laser
               of  Trabecular  Tantalum  Scaffolds  by  Laser  Powder  Bed   Parameters, Scanning Strategies and Material on the Fatigue
               Fusion: Mechanical Property Evaluation and Porous Structure   Strength  of a  Stochastic  Porous Structure.  Addit  Manuf,
               Characterization. Mater Charact, 170:110694.        22:290–301.
               https://doi.org/10.1016/j.matchar.2020.110694       https://doi.org/10.1016/j.addma.2018.05.024
           26.  Huang  S,  Narayan  RL,  Tan  JH,  et al.,  2021,  Resolving   37.  Sing  SL,  Wiria  FE,  Yeong  WY,  2018,  Selective  Laser
               the Porosity-unmelted  Inclusion Dilemma  during  In-Situ   Melting  of Lattice Structures:  A  Statistical  Approach  to
               Alloying  of  Ti34Nb  Via  Laser  Powder  Bed  Fusion.  Acta   Manufacturability and Mechanical Behavior. Robot Cim Int
               Mater, 204:116522.                                  Manuf, 49:170–180.
               https://doi.org/10.1016/j.actamat.2020.116522       https://doi.org/10.1016/j.rcim.2017.06.006
           27.  Nadammal N, Mishurova T, Fritsch T, et al., 2021, Critical   38.  Huang S, Sing SL, de Looze G, et al., 2020, Laser Powder
               Role of Scan Strategies on the Development of Microstructure,   Bed Fusion of Titanium-tantalum Alloys: Compositions and
               Texture,  and  Residual  Stresses during  Laser  Powder Bed   Designs for Biomedical Applications. J Mech Behav Biomed
               Fusion Additive Manufacturing. Addit Manuf, 38:101792.  Mater, 108:103775.
               https://doi.org/10.1016/j.addma.2020.101792         https://doi.org/10.1016/j.jmbbm.2020.103775
           28.  Chen  HS,  Li  QJ,  Liu  G,  2011,  The  Development  Status   39.  Petite H, Viateau V, Bensaid W, et al., 2000, Tissue-engineered
               and  Trend  of  Environmental  Friendly  Vacuum  Pressure   Bone Regeneration. Nat Biotechnol, 18:959–63.
               Impregnation Resin at Home and Abroad. Insul Mater, 2.     https://doi.org/10.1038/79449
               https://doi.org/10.16790/j.cnki.1009-9239.im.2011.02.010  40.  Hollister  SJ,  2005,  Porous  Scaffold  Design  for  Tissue
           29.  Škoro G, Bennett J, Edgecock T, et al., 2011, Dynamic Young’s   Engineering. Nat Mater, 4:518–24.
               Moduli of Tungsten and Tantalum at High Temperature and      https://doi.org/10.1038/nmat1683
               Stress. J Nucl Mater, 409:40–6.                 41.  Chen  Z, Yan  X, Yin  S,  et  al.,  2020,  Influence  of  the  Pore
               https://doi.org/10.1016/j.jnucmat.2010.12.222       Size  and  Porosity  of  Selective  Laser  Melted Ti6Al4V  ELI
           30.  Shimko DA, Shimko VF, Sander EA, et al., 2005, Effect of   Porous Scaffold on Cell Proliferation, Osteogenesis and Bone
               Porosity on the Fluid Flow Characteristics and Mechanical   Ingrowth. Mat Sci Eng C Mater, 106:110289.

           126                         International Journal of Bioprinting (2022)–Volume 8, Issue 1
   135   136   137   138   139   140   141   142   143   144   145