Page 87 - IJB-8-2
P. 87
Mieloch, et al.
Nanocomposites Based on Poly(L-Lactic Acid) Filled with 32. Zhang S, Minus ML, Zhu L, et al., 2008, Polymer
Carbon Nanotubes and Graphene Oxide. J Phys Chem C, Transcrystallinity induced by Carbon Nanotubes. Polymer
124:5469–79. (Guildf), 49:1356–64.
https://doi.org/10.1021/acs.jpcc.9b11843 https://doi.org/10.1016/j.polymer.2008.01.018
29. Zhu H, Kim YD, de Kee D, 2005, Non-Newtonian Fluids 33. Sun H, Mei L, Song C, et al., 2006, The In Vivo Degradation,
with a Yield Stress. J Nonnewton Fluid Mech, 129:177–81. Absorption and Excretion of PCL-Based Implant.
https://doi.org/10.1016/j.jnnfm.2005.06.001 Biomaterials, 27:1735–40.
30. Wurm A, Herrmann A, Cornelius M, et al., 2015, https://doi.org/10.1016/j.biomaterials.2005.09.019
TEMPERATURE dependency of Nucleation Efficiency of 34. Goodwin DG, Boyer I, Devahif T, et al., 2018, Biodegradation
Carbon Nanotubes in Pet and PBT. Macromol Mater Eng, of Carbon Nanotube/Polymer Nanocomposites Using a
300:637–49. Monoculture. Environ Sci Technol, 52:40–51.
https://doi.org/10.1002/mame.201400405 https://doi.org/10.1021/acs.est.7b02062
31. Schawe JE, Pötschke P, Alig I, 2017, Nucleation Efficiency of 35. Frank BP, Goodwin DG, Bohutskyi P, et al., 2020, Influence
Fillers in Polymer Crystallization Studied by Fast Scanning of Polymer Type and Carbon Nanotube Properties on Carbon
Calorimetry: Carbon Nanotubes in Polypropylene. Polymer Nanotube/Polymer Nanocomposite Biodegradation. Sci Total
(Guildf), 116:160–72. Environ, 742:140642.
https://doi.org/10.1016/j.polymer.2017.03.072 https://doi.org/10.1016/j.scitotenv.2020.140512
Publisher’s note
Whioce Publishing remains neutral with regard to
jurisdictional claims in published maps and institutional
affiliations.
International Journal of Bioprinting (2022)–Volume 8, Issue 2 79

