Page 228 - IJB-8-4
P. 228

In situ 3D Bioprinting Robot Technology
           Science  Foundation  of China  (82072412/81772326),      https://doi.org/10.1016/j.burns.2019.04.014
           Project of Shanghai Science and Technology Commission   9.   Cheng RY,  Gertraud  E,  Jean-Michel  G,  et  al.,  2020,
           (19XD1434200/18431903700), and Lingang Laboratory       Handheld Instrument for Wound-Conformal Delivery of Skin
           Open Project (LG-QS-202206-04)                          Precursor Sheets Improves Healing in Full-Thickness Burns.

           Conflict of interest                                    Biofabrication, 12:025002.
                                                                   https://doi.org/10.1088/1758-5090/ab6413
           The authors declare no known conflicts of interest.
                                                               10.  Navid H, Richard  C, Lian  L,  et  al., 2018, Handheld  Skin
           Author contributions                                    Printer: In Situ Formation of Planar Biomaterials and Tissues.
           W.J.W., C.Q.X., and D.K.R. supervised the  entire       Lab Chip, 18:1440–51.
           writing process of the review. X.N., S.G.H., W.H., and      https://doi.org/10.1039/c7lc01236e
           F.H.Y. wrote the manuscript.  S.Y.L. and X.Y.J. edited   11.  Albanna  M, Binder KW, Murphy SV,  et  al., 2019,  In Situ
           the manuscript. All the authors approved the review for   Bioprinting of  Autologous Skin Cells  Accelerates  Wound
           publication.                                            Healing of Extensive Excisional Full-Thickness Wounds. Sci

           References                                              Rep, 9:1856.
                                                                   https://doi.org/10.1038/s41598-018-38366-w
           1.   Singh S, Choudhury D, Yu F, et al., 2020, In Situ Bioprinting-  12.  Wang H, Lian Q, Li D, et al., 2021, Multi-Tissue Layering
               Bioprinting  from Benchside to Bedside?  Acta Biomater,   and Path Planning of In Situ Bioprinting for Complex Skin
               2020,101:14–25.                                     and Soft Tissue Defects. Rapid Prototyp J, 27:321–32.
               https://doi.org/10.1016/j.actbio.2019.08.045        https://doi.org/10.1108/rpj-08-2020-0201
           2.   Vijayavenkataraman  S, Yan WC,  Lu WF,  et  al.,  2018,  3D   13.  Peng L, Zhou  Y, Lu  W,  et  al., 2019, Characterization  of
               Bioprinting of Tissues and Organs for Regenerative Medicine.   a  Novel Polyvinyl  Alcohol/Chitosan  Porous Hydrogel
               Adv Drug Deliv Rev, 132:296–332.                    Combined with Bone Marrow Mesenchymal Stem Cells and
               https://doi.org/10.1016/j.addr.2018.07.004          its Application in Articular Cartilage Repair. BioMed Central,
           3.   Keriquel  V, Guillemot  F,  Arnault I,  et al., 2020,  In Vivo   20:257.
               Bioprinting  for Computer  and  Robotic-assisted  Medical      https://doi.org/10.1186/s12891-019-2644-7
               Intervention:  Preliminary  Study in Mice.  Biofabrication,   14.  Pengcheng  T,  Yang  G, Suyang  Z,  et  al.,  2019, Research
               2:014101.                                           Progress on  Signaling  Molecules  Involved  in  Articular
               https://doi.org/10.1088/1758-5082/2/1/014101        Cartilage  Repair. Sheng  Wu Yi Xue Gong Cheng Xue Za
           4.   Ding H, Chang RC, 2018, Simulating Image-guided In Situ   Zhi., 36:343–8.
               Bioprinting of a Skin Graft onto a Phantom Burn Wound Bed.      https://doi.org/10.7507/1001-5515.201806021
               Addit Manuf, 22:708–19.                         15.  Yifan D, 2018, 3D Printed Osteochondral Integrated Repair
               https://doi.org/10.1016/j.addma.2018.06.022         Gradient Hybrid Scaffold and its Performance. Guangzhou,
           5.   Wang M, He J, Liu Y, et al., 2015, The Trend Towards In Vivo   China: South China University of Technology.
               Bioprinting. Int J Bioprint, 1:15-26.           16.  Yang  W, Patrick K,  Nicholas B,  et al.,  2021, Three-
               http://dx.doi.org/10.18063/IJB.2015.01.001          Dimensional Bioprinting of Articular Cartilage: A Systematic
           6.   Ma K, Zhao T, Yang L, et al., 2020, Application of Robotic-  Review. Cartilage, 12:76–92.
               assisted In Situ 3D Printing in Cartilage Regeneration with      https://doi.org/10.1177/1947603518809410
               HAMA Hydrogel: An In Vivo Study. J Adv Res, 23:123–32.  17.  O’Connell  CD, Di Bella  C, Fletcher  T,  et al., 2016,
               https://doi.org/10.1016/j.jare.2020.01.010          Development of the Biopen: A Handheld Device for Surgical
           7.   Ashammakhi N, Ahadian S, Pountos I, et al., 2019, In Situ   Printing of Adipose Stem Cells at a Chondral Wound Site.
               Three-dimensional Printing for Reparative and Regenerative   Biofabrication, 8:015019.
               Therapy. Biomed Microdevices, 21:42.                https://doi.org/10.1088/1758-5090/8/1/015019
               https://doi.org/10.1007/s10544-019-0372-2       18.  Bella  CD, Duchi  S, O’Connell  CD,  et  al., 2018,  In-Situ
           8.   Chong C, Wang Y, Fathi A, et al., 2019, Skin Wound Repair:   Handheld  3D Bioprinting  for  Cartilage  Regeneration.
               Results of a Pre-Clinical  Study to Evaluate  Electropsun   J Tissue Eng Regen Med, 12:611–21.
               Collagen-Elastin-PCL  Scaffolds  as  Dermal  Substitutes.      https://doi.org/10.1002/term.2476
               Burns, 45:1639–48.                              19.  Duchi S, Onofrillo C, Connell CO, et al., 2017, Handheld Co-

           220                         International Journal of Bioprinting (2022)–Volume 8, Issue 4
   223   224   225   226   227   228   229   230   231   232   233