Page 229 - IJB-8-4
P. 229
Neng, et al.
Axial Bioprinting: Application to In Situ Surgical Cartilage State of the Art and Perspectives. Front Med, 14:382–403.
Repair. Sci Rep, 7:5837. https://doi.org/10.1007/s11684-020-0781-x
https://doi.org/10.1038/s41598-017-05699-x 31. Zhang W, Li H, Cui L, et al., 2021, Research Progress
20. Chen Y, Zhang J, Liu X, et al., 2020, Noninvasive In Vivo 3D and Development Trend of Surgical Robot and Surgical
Bioprinting. Sci Adv, 6:eaba7406. Instrument Arm. Int J Med Robot, 17:e2309.
21. Wenying W, Honglian D, 2021, Articular Cartilage and https://doi.org/10.1002/rcs.2309
Osteochondral Tissue Engineering Techniques: Recent 32. D’Souza M, Gendreau J, Feng A, et al., 2019, Robotic-
Advances and Challenges. Bioact Mater, 6:4830–55. Assisted Spine Surgery: History, Efficacy, Cost, and Future
https://doi.org/10.1016/j.bioactmat.2021.05.011 Trends. Robot Surg, 6:9–23.
22. Meiling W, Shuifeng L, Da H, et al., 2020, Biocompatible https://doi.org/10.2147/rsrr.s190720
Heterogeneous Bone Incorporated with Polymeric 33. Kaushal M, Kurpad S, Choi H, 2019, Robotic-Assisted
Biocomposites for Human Bone Repair by 3D Printing Systems for Spinal Surgery. In: Neurosurgical Procedures
Technology. J Appl Polym Sci, 138:50114. Innovative Approaches. London: IntechOpen.
https://doi.org/10.1002/app.50114 https://doi.org/10.5772/intechopen.88730
23. Keriquel V, Oliveira H, Rémy M, et al., 2017, In Situ 34. Ming H, Chin PL, Tay K, et al., 2014, Early Experiences
Printing of Mesenchymal Stromal Cells, by Laser-Assisted with Robot-Assisted Total Knee Arthroplasty using the
Bioprinting, for In Vivo Bone Regeneration Applications. Sci DigiMatch™igiMatche Surgical System. Singapore Med J,
Rep, 7:1778. 55:529–34.
https://doi.org/10.1038/s41598-017-01914-x https://doi.org/10.11622/smedj.2014136
24. Malyshev I, Runova G, Poduraev Y, et al., 2018, Natural 35. Banerjee S, Cherian JJ, Elmallah RK, et al., 2015, Robotic-
Amelogenesis and Rationale for Enamel Regeneration Assisted Knee Arthroplasty. Expert Rev Med Devices,
by Means of Robotic Bioprinting of Tissues In Situ. 12:727–35.
Stomatologiia (Mosk), 97:58–64. https://doi.org/10.1586/17434440.2015.1086264
https://doi.org/10.17116/stomat201897258-64 36. Liow MH, Chin PL, Pang HN, et al., 2017, THINK surgical
®
25. Campos D, Zhang S, Kreimendahl F, et al., 2020, Hand-Held TSolution-One (Robodoc) total knee arthroplasty. SICOT
Bioprinting for De Novo Vascular Formation Applicable to J, 3:63.
Dental Pulp Regeneration. Connect Tissue Res, 61:205–15. https://doi.org/10.1051/sicotj/2017052
https://doi.org/10.1080/03008207.2019.1640217 37. Reddy VY, Neuzil P, Malchano ZJ, et al., 2007, View-
26. Lopes HJ, Regina C, Janaína D, et al., 2020, Piezoelectric Synchronized Robotic Image-Guided Therapy for Atrial
3D Bioprinting for Ophthalmological Applications: Process Fibrillation Ablation: Experimental Validation and Clinical
Development and Viability Analysis of the Technology. Feasibility. Circulation, 115:2705–14.
Biomed Phys Eng Express, 6:035021. https://doi.org/10.1161/circulationaha.106.677369
https://doi.org/10.1088/2057-1976/ab7bf9 38. Jayender J, Patel RV, Nikumb S, 2006, Robot-Assisted
27. Bergeles C, 2014, From Passive Tool Holders to Catheter Insertion Using Hybrid Impedance Control:
Microsurgeons: Safer, Smaller, Smarter Surgical Robots. Robotics and Automation, 2006. ICRA 2006. Proceedings
IEEE Trans Biomed Eng, 61:1565–76. 2006 IEEE International Conference on, 2006.
https://doi.org/10.1109/TBME.2013.2293815 https://doi.org/10.1109/robot.2006.1641777
28. Gifari MW, Naghibi H, Stramigioli S, et al., 2019, A Review 39. Beyar R, 2010, Navigation within the Heart and Vessels in
on Recent Advances in Soft Surgical Robots for Endoscopic Clinical Practice. Ann N Y Acad Sci, 1188:207–213.
Applications. Int J Med Robot, 15:e2010. https://doi.org/10.1111/j.1749-6632.2009.05102.x
https://doi.org/10.1002/rcs.2010 40. Zhang X, Ma X, Zhou J, et al., 2018, Summary of Medical
29. Kinross JM, Mason SE, Mylonas G, et al., 2020, Next- Robot Technology Development: 2018 IEEE International
Generation Robotics in Gastrointestinal Surgery. Nat Rev Conference on Mechatronics and Automation (ICMA), 2018.
Gastroenterol Hepatol, 17:430–40. https://doi.org/10.1109/icma.2018.8484458
https://doi.org/10.1038/s41575-020-0290-z 41. Sutherland GR, Wolfsberger S, Lama S, et al., 2013, The
30. Chen Y, Zhang S, Wu Z, et al., 2020, Review of Surgical Evolution of neuroArm. Neurosurgery, 72:27–32.
Robotic Systems for Keyhole and Endoscopic Procedures: https://doi.org/10.1227/NEU.0b013e318270da19
International Journal of Bioprinting (2022)–Volume 8, Issue 4 221

