Page 229 - IJB-8-4
P. 229

Neng, et al.
               Axial Bioprinting: Application to In Situ Surgical Cartilage   State of the Art and Perspectives. Front Med, 14:382–403.
               Repair. Sci Rep, 7:5837.                            https://doi.org/10.1007/s11684-020-0781-x
               https://doi.org/10.1038/s41598-017-05699-x      31.  Zhang  W, Li H, Cui L,  et  al., 2021, Research  Progress
           20.  Chen Y, Zhang J, Liu X, et al., 2020, Noninvasive In Vivo 3D   and Development  Trend of Surgical  Robot and Surgical
               Bioprinting. Sci Adv, 6:eaba7406.                   Instrument Arm. Int J Med Robot, 17:e2309.
           21.  Wenying  W, Honglian D, 2021,  Articular Cartilage  and      https://doi.org/10.1002/rcs.2309
               Osteochondral Tissue  Engineering Techniques:  Recent   32.  D’Souza M, Gendreau  J, Feng  A,  et  al., 2019, Robotic-
               Advances and Challenges. Bioact Mater, 6:4830–55.   Assisted Spine Surgery: History, Efficacy, Cost, and Future
               https://doi.org/10.1016/j.bioactmat.2021.05.011     Trends. Robot Surg, 6:9–23.
           22.  Meiling W, Shuifeng L, Da H, et al., 2020, Biocompatible      https://doi.org/10.2147/rsrr.s190720
               Heterogeneous  Bone  Incorporated  with  Polymeric  33.  Kaushal M, Kurpad S, Choi H, 2019, Robotic-Assisted
               Biocomposites for Human Bone Repair by 3D  Printing   Systems for Spinal  Surgery. In:  Neurosurgical  Procedures
               Technology. J Appl Polym Sci, 138:50114.            Innovative Approaches. London: IntechOpen.
               https://doi.org/10.1002/app.50114                   https://doi.org/10.5772/intechopen.88730
           23.  Keriquel  V, Oliveira H, Rémy M,  et al., 2017,  In Situ   34.  Ming H, Chin PL, Tay K,  et al., 2014, Early  Experiences
               Printing of Mesenchymal Stromal Cells, by Laser-Assisted   with Robot-Assisted  Total  Knee  Arthroplasty using the
               Bioprinting, for In Vivo Bone Regeneration Applications. Sci   DigiMatch™igiMatche Surgical System. Singapore Med J,
               Rep, 7:1778.                                        55:529–34.
               https://doi.org/10.1038/s41598-017-01914-x          https://doi.org/10.11622/smedj.2014136
           24.  Malyshev I, Runova G, Poduraev  Y,  et al., 2018, Natural   35.  Banerjee S, Cherian JJ, Elmallah RK, et al., 2015, Robotic-
               Amelogenesis  and Rationale  for Enamel  Regeneration   Assisted  Knee Arthroplasty.  Expert Rev  Med Devices,
               by Means of Robotic Bioprinting of  Tissues  In Situ.   12:727–35.
               Stomatologiia (Mosk), 97:58–64.                     https://doi.org/10.1586/17434440.2015.1086264
               https://doi.org/10.17116/stomat201897258-64     36.  Liow MH, Chin PL, Pang HN, et al., 2017, THINK surgical
                                                                              ®
           25.  Campos D, Zhang S, Kreimendahl F, et al., 2020, Hand-Held   TSolution-One  (Robodoc) total knee arthroplasty. SICOT
               Bioprinting for De Novo Vascular Formation Applicable to   J, 3:63.
               Dental Pulp Regeneration. Connect Tissue Res, 61:205–15.     https://doi.org/10.1051/sicotj/2017052
               https://doi.org/10.1080/03008207.2019.1640217   37.  Reddy  VY, Neuzil P, Malchano ZJ,  et al.,  2007, View-
           26.  Lopes HJ, Regina C, Janaína D, et al., 2020, Piezoelectric   Synchronized  Robotic  Image-Guided  Therapy  for  Atrial
               3D Bioprinting for Ophthalmological Applications: Process   Fibrillation Ablation: Experimental Validation  and Clinical
               Development  and  Viability  Analysis of the  Technology.   Feasibility. Circulation, 115:2705–14.
               Biomed Phys Eng Express, 6:035021.                  https://doi.org/10.1161/circulationaha.106.677369
               https://doi.org/10.1088/2057-1976/ab7bf9        38.  Jayender J, Patel RV, Nikumb S, 2006, Robot-Assisted
           27.  Bergeles C, 2014, From Passive  Tool Holders to    Catheter Insertion Using Hybrid Impedance Control:
               Microsurgeons:  Safer, Smaller, Smarter  Surgical  Robots.   Robotics and Automation, 2006. ICRA 2006. Proceedings
               IEEE Trans Biomed Eng, 61:1565–76.                  2006 IEEE International Conference on, 2006.
               https://doi.org/10.1109/TBME.2013.2293815           https://doi.org/10.1109/robot.2006.1641777
           28.  Gifari MW, Naghibi H, Stramigioli S, et al., 2019, A Review   39.  Beyar R, 2010, Navigation within the Heart and Vessels in
               on Recent Advances in Soft Surgical Robots for Endoscopic   Clinical Practice. Ann N Y Acad Sci, 1188:207–213.
               Applications. Int J Med Robot, 15:e2010.            https://doi.org/10.1111/j.1749-6632.2009.05102.x
               https://doi.org/10.1002/rcs.2010                40.  Zhang X, Ma X, Zhou J, et al., 2018, Summary of Medical
           29.  Kinross JM, Mason SE, Mylonas  G,  et  al., 2020, Next-  Robot  Technology  Development:  2018 IEEE  International
               Generation  Robotics  in Gastrointestinal  Surgery.  Nat Rev   Conference on Mechatronics and Automation (ICMA), 2018.
               Gastroenterol Hepatol, 17:430–40.                   https://doi.org/10.1109/icma.2018.8484458
               https://doi.org/10.1038/s41575-020-0290-z       41.  Sutherland GR,  Wolfsberger S, Lama S,  et al.,  2013, The
           30.  Chen Y, Zhang S, Wu Z,  et al., 2020, Review of Surgical   Evolution of neuroArm. Neurosurgery, 72:27–32.
               Robotic Systems for Keyhole and Endoscopic Procedures:      https://doi.org/10.1227/NEU.0b013e318270da19

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 4       221
   224   225   226   227   228   229   230   231   232   233   234