Page 327 - IJB-8-4
P. 327
Bonatti, et al.
parameters on 3D extrusion printing of pluronic hydrogels Georgia, p1127–1132.
and machine learning guided parameter recommendation. Int 28. Ogunsanya M, Isichei J, Parupelli SK, et al., 2021, In-situ
J Bioprint, 7: 434. droplet monitoring of inkjet 3D printing process using image
https://doi.org/10.18063/ijb.v7i4.434 analysis and machine learning models. Procedia Manuf,
16. Ruberu K, Senadeera M, Rana S, et al., 2021, Coupling 53: 427–434.
machine learning with 3D bioprinting to fast track optimisation https://doi.org/10.1016/j.promfg.2021.06.045
of extrusion printing. Appl Mater Today, 22: 100914. 29. Gobert C, Reutzel EW, Petrich J, et al., 2018, Application
https://doi.org/10.1016/j.apmt.2020.100914 of supervised machine learning for defect detection during
17. Jin Z, Zhang Z, Shao X, et al., 2021, Monitoring anomalies in metallic powder bed fusion additive manufacturing using
3D bioprinting with deep neural networks. ACS Biomater Sci high resolution imaging. Addit Manuf, 21: 517–528.
Eng. https://doi.org/10.1016/j.addma.2018.04.005
https://doi.org/10.1021/acsbiomaterials.0c01761 30. Sing SL, Kuo CN, Shih CT, et al., 2021, Perspectives of
18. Chandola V, Banerjee A, Kumar V, 2009, Anomaly detection: using machine learning in laser powder bed fusion for metal
A survey. ACM Comput Surv (CSUR), 41: 1–58. additive manufacturing. Virtual Phys Prototyp, 16: 372–386.
https://doi.org/10.1145/1541880.1541882 https://doi.org/10.1080/17452759.2021.1944229
19. Wang R, Nie K, Wang T, et al., 2020, Deep learning for 31. Jin Z, Zhang Z, Gu GX, 2019, Autonomous in-situ correction
anomaly detection. In: Proceedings of the 13 International of fused deposition modeling printers using computer vision
th
Conference on Web Search and Data Mining. p894–896. and deep learning. Manuf Lett, 22, 11–15.
https://doi.org/10.1145/3336191.3371876 https://doi.org/10.1016/j.mfglet.2019.09.005
20. Pang G, Shen C, Cao L, et al., 2021, Deep learning for anomaly 32. Tonnaer L, Li J, Osin V, et al., 2019, Anomaly detection
detection: A review. ACM Comput Surv (CSUR), 54: 1–38. for visual quality control of 3D-printed products. In: 2019
https://doi.org/10.1145/3439950 International Joint Conference on Neural Networks (IJCNN).
21. Goodfellow I, Bengio Y, Courville A, 2016, Deep Learning. IEEE, Piscataway, New Jersey, p1–8.
Cambridge, Massachusetts, MIT Press. 33. Zhang J, Wang P, Gao RX, 2019, Deep learning-based tensile
22. Chalapathy R, Chawla S, 2019, Deep learning for anomaly strength prediction in fused deposition modeling. Comput
detection: A survey. arXiv preprint arXiv, 1901: 03407. Ind, 107: 11–21.
https://doi.org/10.48550/arXiv.1901.03407 https://doi.org/10.1016/j.compind.2019.01.011
23. LeCun Y, Bengio Y, Hinton G, 2015, Deep learning. Nature, 34. Zhang B, Liu S, Shin YC, 2019, In-process monitoring of
521: 436–444. porosity during laser additive manufacturing process. Addit
24. Wang C, Tan XP, Tor SB, et al., 2020, Machine learning in Manuf, 28: 497–505.
additive manufacturing: State-of-the-art and perspectives. https://doi.org/10.1016/j.addma.2019.05.030
Addit Manuf, 36: 101538. 35. Wang T, Kwok TH, Zhou C, et al., 2018. In-situ droplet
https://doi.org/10.1016/j.addma.2020.101538 inspection and closed-loop control system using machine
25. Meng L, McWilliams B, Jarosinski W, et al., 2020, Machine learning for liquid metal jet printing. J Manuf Syst, 47: 83–92.
learning in additive manufacturing: A review. JOM, https://doi.org/10.1016/j.jmsy.2018.04.003
72: 2363–2377. 36. McKinney W, 2011, pandas: A foundational Python library
https://doi.org/10.1007/s11837-020-04155-y for data analysis and statistics. Python High Perform Sci
26. Wu M, Phoha VV, Moon YB, et al., 2016, Detecting malicious Comput, 14: 1–9.
defects in 3D printing process using machine learning and 37. Bradski G, 2000, The openCV library. Dr Dobbs J Softw
image classification. In: ASME International Mechanical Tools, 25: 120–123.
Engineering Congress and Exposition. Vol. 50688. 38. Abadi M, Agarwal A, Barham P, et al., 2016, Tensorflow:
American Society of Mechanical Engineers, New York, Large-scale machine learning on heterogeneous distributed
pV014T07A004. systems. arXiv preprint arXiv, 1603: 04467.
27. Liu C, Roberson D, Kong Z, 2017, Textural analysis-based https://doi.org/10.48550/arXiv.1603.04467
online closed-loop quality control for additive manufacturing 39. Chollet F, 2018, Keras: The python deep learning library.
processes. In: IIE Annual Conference. Proceedings. Institute Astrophysics Source Code Library, ascl-1806.
of Industrial and Systems Engineers, Peachtree Corners, 40. Pedregosa F, Varoquaux G, Gramfort A, et al., 2011, Scikit-
International Journal of Bioprinting (2022)–Volume 8, Issue 4 319

