Page 327 - IJB-8-4
P. 327

Bonatti, et al.
               parameters on 3D extrusion printing of pluronic hydrogels   Georgia, p1127–1132.
               and machine learning guided parameter recommendation. Int   28.  Ogunsanya M, Isichei J, Parupelli SK, et al., 2021, In-situ
               J Bioprint, 7: 434.                                 droplet monitoring of inkjet 3D printing process using image
               https://doi.org/10.18063/ijb.v7i4.434               analysis and machine  learning  models.  Procedia  Manuf,
           16.  Ruberu  K,  Senadeera  M,  Rana  S,  et al., 2021, Coupling   53: 427–434.
               machine learning with 3D bioprinting to fast track optimisation      https://doi.org/10.1016/j.promfg.2021.06.045
               of extrusion printing. Appl Mater Today, 22: 100914.  29.  Gobert C, Reutzel EW, Petrich J, et al., 2018, Application
               https://doi.org/10.1016/j.apmt.2020.100914          of supervised machine learning for defect detection during
           17.  Jin Z, Zhang Z, Shao X, et al., 2021, Monitoring anomalies in   metallic  powder bed fusion additive  manufacturing  using
               3D bioprinting with deep neural networks. ACS Biomater Sci   high resolution imaging. Addit Manuf, 21: 517–528.
               Eng.                                                https://doi.org/10.1016/j.addma.2018.04.005
               https://doi.org/10.1021/acsbiomaterials.0c01761  30.  Sing  SL,  Kuo  CN,  Shih  CT,  et al., 2021, Perspectives  of
           18.  Chandola V, Banerjee A, Kumar V, 2009, Anomaly detection:   using machine learning in laser powder bed fusion for metal
               A survey. ACM Comput Surv (CSUR), 41: 1–58.         additive manufacturing. Virtual Phys Prototyp, 16: 372–386.
               https://doi.org/10.1145/1541880.1541882             https://doi.org/10.1080/17452759.2021.1944229
           19.  Wang  R,  Nie  K,  Wang  T,  et  al.,  2020,  Deep  learning  for   31.  Jin Z, Zhang Z, Gu GX, 2019, Autonomous in-situ correction
               anomaly detection. In: Proceedings of the 13  International   of fused deposition modeling printers using computer vision
                                                th
               Conference on Web Search and Data Mining. p894–896.  and deep learning. Manuf Lett, 22, 11–15.
               https://doi.org/10.1145/3336191.3371876             https://doi.org/10.1016/j.mfglet.2019.09.005
           20.  Pang G, Shen C, Cao L, et al., 2021, Deep learning for anomaly   32.  Tonnaer  L,  Li  J, Osin  V,  et  al.,  2019, Anomaly  detection
               detection: A review. ACM Comput Surv (CSUR), 54: 1–38.  for  visual  quality  control  of  3D-printed  products.  In:  2019
               https://doi.org/10.1145/3439950                     International Joint Conference on Neural Networks (IJCNN).
           21.  Goodfellow I, Bengio Y, Courville A, 2016, Deep Learning.   IEEE, Piscataway, New Jersey, p1–8.
               Cambridge, Massachusetts, MIT Press.            33.  Zhang J, Wang P, Gao RX, 2019, Deep learning-based tensile
           22.  Chalapathy R, Chawla S, 2019, Deep learning for anomaly   strength prediction  in fused deposition  modeling.  Comput
               detection: A survey. arXiv preprint arXiv, 1901: 03407.  Ind, 107: 11–21.
               https://doi.org/10.48550/arXiv.1901.03407           https://doi.org/10.1016/j.compind.2019.01.011
           23.  LeCun Y, Bengio Y, Hinton G, 2015, Deep learning. Nature,   34.  Zhang B, Liu  S, Shin YC, 2019, In-process monitoring  of
               521: 436–444.                                       porosity during laser additive manufacturing process. Addit
           24.  Wang C, Tan XP, Tor SB, et al., 2020, Machine learning in   Manuf, 28: 497–505.
               additive  manufacturing:  State-of-the-art  and  perspectives.      https://doi.org/10.1016/j.addma.2019.05.030
               Addit Manuf, 36: 101538.                        35.  Wang  T,  Kwok  TH,  Zhou  C,  et  al.,  2018.  In-situ  droplet
               https://doi.org/10.1016/j.addma.2020.101538         inspection  and closed-loop  control system using machine
           25.  Meng L, McWilliams B, Jarosinski W, et al., 2020, Machine   learning for liquid metal jet printing. J Manuf Syst, 47: 83–92.
               learning  in  additive  manufacturing:  A  review.  JOM,      https://doi.org/10.1016/j.jmsy.2018.04.003
               72: 2363–2377.                                  36.  McKinney W, 2011, pandas: A foundational Python library
               https://doi.org/10.1007/s11837-020-04155-y          for data  analysis  and statistics.  Python High Perform Sci
           26.  Wu M, Phoha VV, Moon YB, et al., 2016, Detecting malicious   Comput, 14: 1–9.
               defects in 3D printing process using machine learning and   37.  Bradski G, 2000,  The  openCV library.  Dr  Dobbs J Softw
               image  classification.  In:  ASME  International  Mechanical   Tools, 25: 120–123.
               Engineering  Congress and Exposition.  Vol.  50688.   38.  Abadi  M, Agarwal A,  Barham  P,  et al.,  2016, Tensorflow:
               American  Society  of  Mechanical  Engineers,  New  York,   Large-scale  machine  learning  on heterogeneous  distributed
               pV014T07A004.                                       systems. arXiv preprint arXiv, 1603: 04467.
           27.  Liu C, Roberson D, Kong Z, 2017, Textural analysis-based      https://doi.org/10.48550/arXiv.1603.04467
               online closed-loop quality control for additive manufacturing   39.  Chollet  F,  2018,  Keras:  The  python  deep  learning  library.
               processes. In: IIE Annual Conference. Proceedings. Institute   Astrophysics Source Code Library, ascl-1806.
               of Industrial  and Systems Engineers,  Peachtree  Corners,   40.  Pedregosa F, Varoquaux G, Gramfort A, et al., 2011, Scikit-

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 4       319
   322   323   324   325   326   327   328   329   330   331   332