Page 88 - IJB-8-4
P. 88
3D Printable PLA/BG Composite In Vitro Evaluation
and Polylactic Acid/Bioglass Composite Scaffolds: Insights 41. Wutzler S, Maier M, Lehnert M, et al., 2009, Suppression and
Into Materials for Bone Regeneration. J Mech Behav Biomed Recovery of Lps-Stimulated Monocyte Activity after Trauma
Mater, 104:103641. is Correlated with Increasing Injury Severity: A Prospective
https://doi.org/10.1016/j.jmbbm.2020.103641 Clinical Study. J Trauma, 66:1273–80.
32. Distler T, Fournier N, Grünewald A, et al., 2020, Polymer- https://doi.org/10.1097/TA.0b013e3181968054
Bioactive Glass Composite Filaments for 3D Scaffold 42. Eldesoqi K, Henrich D, El-Kady AM, et al., 2014, Safety
Manufacturing by Fused Deposition Modeling: Fabrication Evaluation of a Bioglass-Polylactic Acid Composite Scaffold
and Characterization. Front Bioeng Biotechnol, 8:1–17. Seeded with Progenitor Cells in a Rat Skull Critical-Size
https://doi.org/10.3389/fbioe.2020.00552 Bone Defect. PLoS One, 9:e87642.
33. Ginsac N, Chenal JM, Meille S, et al., 2011, Crystallization https://doi.org/10.1371/journal.pone.0087642
Processes at the Surface of Polylactic Acid-Bioactive Glass 43. Azizi L, Turkki P, Huynh N, et al., 2021, Surface Modification
Composites During Immersion in Simulated Body Fluid. of Bioactive Glass Promotes Cell Attachment and Spreading.
J Biomed Mater Res Part B Appl Biomater, 99B:412–9. ACS Omega, 6:22635–42.
https://doi.org/10.1002/jbm.b.31913 https://doi.org/10.1021/acsomega.1c02669
34. Henrich D, Verboket RR, Schaible A, et al., 2015, 44. Vissers CA, Harvestine JN, Leach JK, 2015, Pore Size
Characterization of Bone Marrow Mononuclear Cells on Regulates Mesenchymal Stem Cell Response to Bioglass-
Biomaterials for Bone Tissue Engineering In Vitro. Biomed Loaded Composite Scaffolds. J Mater Chem B, 3:8650–8.
Res Int, 2015:762407. https://doi.org/10.1039/c5tb00947b
https://doi.org/10.1155/2015/762407 45. Aguirre A, González A, Navarro M, et al., 2012, Control
35. Seebach C, Henrich D, Tewksbury R, et al., 2007, Number of Microenvironmental Cues with a Smart Biomaterial
and Proliferative Capacity of Human Mesenchymal Stem Composite Promotes Endothelial Progenitor Cell
Cells are Modulated Positively in Multiple Trauma Patients Angiogenesis. Eur Cells Mater, 24:90–106.
and Negatively in Atrophic Nonunions. Calcif Tissue Int, https://doi.org/10.22203/eCM.v024a07
80:294–300. 46. Kulterer B, Friedl G, Jandrositz A, et al., 2007, Gene
https://doi.org/10.1007/s00223-007-9020-6 Expression Profiling of Human Mesenchymal Stem Cells
36. Oliveira KM, Leppik L, Keswani K, et al., 2020, Electrical Derived from Bone Marrow During Expansion and Osteoblast
Stimulation Decreases Dental Pulp Stem Cell Osteo-/ Differentiation. BMC Genomics, 8:1–15.
Odontogenic Differentiation. Biores Open Access, 9:162–73. https://doi.org/10.1186/1471-2164-8-70
https://doi.org/10.1089/biores.2020.0002 47. Schroeder TM, Jensen ED, Westendorf JJ, 2005, Runx2:
37. Schätzlein E, Kicker C, Söhling N, et al., (2022) 3D-printed A Master Organizer of Gene Transcription in Developing
PLA bioglass scaffolds with controllable calcium release and and Maturing Osteoblasts. Birth Defects Res Part C Embryo
MSC adhesion for bone tissue engineering. Polymers, 14:2389. Today Rev, 75:213–25.
https://doi.org/10.3390/polym14122389 https://doi.org/10.1002/bdrc.20043
38. Yang J, Shi G, Bei J, et al., 2002, Fabrication and Surface 48. Li X, Yi W, Jin A, et al., 2015, Effects of Sequentially
Modification of Macroporous Poly(L-Lactic Acid) and Poly(L- Released BMP-2 and BMP-7 from PELA Microcapsule-
Lactic-Co-Glycolic Acid) (70/30) Cell Scaffolds for Human Based Scaffolds on the Bone Regeneration. Am J Transl Res,
Skin Fibroblast Cell Culture. J Biomed Mater Res, 62:438–46. 7:1417–28.
https://doi.org/10.1002/jbm.10318 49. Bouyer M, Guillot R, Lavaud J, et al., 2016, Surface
39. Johari N, Fathi MH, Golozar MA, et al., 2012, Poly(E- Delivery of Tunable Doses of Bmp-2 from an Adaptable
Caprolactone)/Nano Fluoridated Hydroxyapatite Scaffolds Polymeric Scaffold Induces Volumetric Bone Regeneration.
for Bone Tissue Engineering: In Vitro Degradation and Biomaterials, 104:168–81.
Biocompatibility Study. J Mater Sci Mater Med, 23:763–70. https://doi.org/10.1016/j.biomaterials.2016.06.001
https://doi.org/10.1007/s10856-011-4528-8 50. Yan H, Wu M, Yuan Y, et al., 2014, Priming of Toll-like
40. Livak KJ, Schmittgen TD, 2001, Analysis of Relative Gene Receptor 4 Pathway In Mesenchymal Stem Cells Increases
Expression Data Using Real- Time Quantitative PCR and the Expression of B Cell Activating Factor. Biochem Biophys Res
2(-Delta Delta C(T)) Method. Methods, 408:402–8. Commun, 448:212–17.
https://doi.org/10.1006/meth.2001.1262 https://doi.org/10.1016/j.bbrc.2014.04.097
80 International Journal of Bioprinting (2022)–Volume 8, Issue 4

