Page 88 - IJB-8-4
P. 88

3D Printable PLA/BG Composite In Vitro Evaluation
               and Polylactic Acid/Bioglass Composite Scaffolds: Insights   41.  Wutzler S, Maier M, Lehnert M, et al., 2009, Suppression and
               Into Materials for Bone Regeneration. J Mech Behav Biomed   Recovery of Lps-Stimulated Monocyte Activity after Trauma
               Mater, 104:103641.                                  is Correlated with Increasing Injury Severity: A Prospective
               https://doi.org/10.1016/j.jmbbm.2020.103641         Clinical Study. J Trauma, 66:1273–80.
           32.  Distler T, Fournier N, Grünewald A, et al., 2020, Polymer-     https://doi.org/10.1097/TA.0b013e3181968054
               Bioactive  Glass  Composite  Filaments  for  3D  Scaffold   42.  Eldesoqi  K,  Henrich  D,  El-Kady AM,  et al., 2014, Safety
               Manufacturing by Fused Deposition Modeling: Fabrication   Evaluation of a Bioglass-Polylactic Acid Composite Scaffold
               and Characterization. Front Bioeng Biotechnol, 8:1–17.  Seeded with Progenitor Cells in a Rat Skull Critical-Size
               https://doi.org/10.3389/fbioe.2020.00552            Bone Defect. PLoS One, 9:e87642.
           33.  Ginsac N, Chenal JM, Meille S, et al., 2011, Crystallization      https://doi.org/10.1371/journal.pone.0087642
               Processes at the Surface of Polylactic Acid-Bioactive Glass   43.  Azizi L, Turkki P, Huynh N, et al., 2021, Surface Modification
               Composites During Immersion in Simulated  Body Fluid.   of Bioactive Glass Promotes Cell Attachment and Spreading.
               J Biomed Mater Res Part B Appl Biomater, 99B:412–9.  ACS Omega, 6:22635–42.
               https://doi.org/10.1002/jbm.b.31913                 https://doi.org/10.1021/acsomega.1c02669
           34.  Henrich  D,  Verboket  RR, Schaible  A,  et  al.,  2015,   44.  Vissers  CA,  Harvestine  JN,  Leach  JK,  2015,  Pore  Size
               Characterization  of Bone Marrow Mononuclear Cells on   Regulates Mesenchymal Stem Cell Response to Bioglass-
               Biomaterials for Bone Tissue Engineering In Vitro. Biomed   Loaded Composite Scaffolds. J Mater Chem B, 3:8650–8.
               Res Int, 2015:762407.                               https://doi.org/10.1039/c5tb00947b
               https://doi.org/10.1155/2015/762407             45.  Aguirre A,  González A,  Navarro  M,  et al., 2012, Control
           35.  Seebach C, Henrich D, Tewksbury R, et al., 2007, Number   of  Microenvironmental  Cues  with  a  Smart  Biomaterial
               and Proliferative  Capacity  of Human Mesenchymal  Stem   Composite  Promotes  Endothelial  Progenitor  Cell
               Cells are Modulated Positively in Multiple Trauma Patients   Angiogenesis. Eur Cells Mater, 24:90–106.
               and Negatively  in  Atrophic Nonunions.  Calcif  Tissue Int,      https://doi.org/10.22203/eCM.v024a07
               80:294–300.                                     46.  Kulterer  B,  Friedl  G,  Jandrositz  A,  et  al., 2007, Gene
               https://doi.org/10.1007/s00223-007-9020-6           Expression  Profiling  of  Human  Mesenchymal  Stem  Cells
           36.  Oliveira KM, Leppik L, Keswani K, et al., 2020, Electrical   Derived from Bone Marrow During Expansion and Osteoblast
               Stimulation  Decreases  Dental  Pulp  Stem  Cell  Osteo-/  Differentiation. BMC Genomics, 8:1–15.
               Odontogenic Differentiation. Biores Open Access, 9:162–73.     https://doi.org/10.1186/1471-2164-8-70
               https://doi.org/10.1089/biores.2020.0002        47.  Schroeder  TM,  Jensen  ED,  Westendorf  JJ,  2005,  Runx2:
           37.  Schätzlein E, Kicker C, Söhling N, et al., (2022) 3D-printed   A  Master Organizer of Gene  Transcription in Developing
               PLA bioglass scaffolds with controllable calcium release and   and Maturing Osteoblasts. Birth Defects Res Part C Embryo
               MSC adhesion for bone tissue engineering. Polymers, 14:2389.  Today Rev, 75:213–25.
               https://doi.org/10.3390/polym14122389               https://doi.org/10.1002/bdrc.20043
           38.  Yang  J,  Shi  G,  Bei  J,  et al., 2002, Fabrication and Surface   48.  Li  X,  Yi  W,  Jin  A,  et al.,  2015,  Effects  of  Sequentially
               Modification of Macroporous Poly(L-Lactic Acid) and Poly(L-  Released  BMP-2 and BMP-7 from PELA Microcapsule-
               Lactic-Co-Glycolic Acid)  (70/30)  Cell  Scaffolds  for  Human   Based Scaffolds on the Bone Regeneration. Am J Transl Res,
               Skin Fibroblast Cell Culture. J Biomed Mater Res, 62:438–46.  7:1417–28.
               https://doi.org/10.1002/jbm.10318               49.  Bouyer M, Guillot R, Lavaud J,  et al., 2016, Surface
           39.  Johari N, Fathi MH, Golozar MA,  et al., 2012, Poly(E-  Delivery of  Tunable Doses of Bmp-2 from an  Adaptable
               Caprolactone)/Nano  Fluoridated  Hydroxyapatite  Scaffolds   Polymeric Scaffold Induces Volumetric Bone Regeneration.
               for Bone  Tissue Engineering:  In Vitro Degradation and   Biomaterials, 104:168–81.
               Biocompatibility Study. J Mater Sci Mater Med, 23:763–70.     https://doi.org/10.1016/j.biomaterials.2016.06.001
               https://doi.org/10.1007/s10856-011-4528-8       50.  Yan  H,  Wu  M, Yuan Y,  et al., 2014, Priming of  Toll-like
           40.  Livak KJ, Schmittgen TD, 2001, Analysis of Relative Gene   Receptor 4 Pathway In Mesenchymal Stem Cells Increases
               Expression Data Using Real- Time Quantitative PCR and the   Expression of B Cell Activating Factor. Biochem Biophys Res
               2(-Delta Delta C(T)) Method. Methods, 408:402–8.    Commun, 448:212–17.
               https://doi.org/10.1006/meth.2001.1262              https://doi.org/10.1016/j.bbrc.2014.04.097

           80                          International Journal of Bioprinting (2022)–Volume 8, Issue 4
   83   84   85   86   87   88   89   90   91   92   93