Page 87 - IJB-8-4
P. 87

Söhling, et al.
               Characterization and In Vivo Osteogenesis. J Mater Chem,      https://doi.org/10.1016/j.msec.2008.07.004
               22:12288–95.                                    21.  Westhauser F, Karadjian M, Essers C, et al., 2019, Osteogenic
               https://doi.org/10.1039/c2jm30566f                  Differentiation of Mesenchymal Stem Cells is Enhanced in a
           11.  Trombetta  R, Inzana JA, Schwarz EM,  et al., 2017, 3D   45S5-Supplemented β-TCP Composite Scaffold: An In-Vitro
               Printing of Calcium Phosphate Ceramics for Bone  Tissue   Comparison of Vitoss and Vitoss BA. PLoS One, 14:1–18.
               Engineering and Drug Delivery. Ann Biomed Eng, 45:23–44.     https://doi.org/10.1371/journal.pone.0212799
               https://doi.org/10.1007/s10439-016-1678-3       22.  Al Malat  T, Glombitza  M, Dahmen  J,  et  al.,  2018,  The
           12.  Hwang  KS,  Choi  JW,  Kim  JH,  et  al., 2017, Comparative   Use of Bioactive Glass S53P4 as Bone Graft Substitute in
               Efficacies  of  Collagen-Based  3D  Printed  PCL/PLGA/β-  the Treatment of Chronic Osteomyelitis and Infected Non-
               TCP Composite Block Bone Grafts and Biphasic Calcium   Unions a Retrospective Study of 50 Patients Anwendung von
               Phosphate Bone Substitute for Bone Regeneration. Materials   Bioglas  S53P4  als  Knochenersatzmaterial  Bei  Chronischer
               (Basel), 10:421.                                    Osteomyelitis Und Infe. Z Orthop Unfall, 156:152–159.
               https://doi.org/10.3390/ma10040421                  https://doi.org/10.1055/s-0043-124377
           13.  Pei F, Ping  W, Chengde G,  et al., 2018,  A Multimaterial   23.  Drago L, Toscano M, Bottagisio M, 2018, Recent Evidence
               Scaffold  with  Tunable  Properties:  Toward  Bone  Tissue   on Bioactive Glass Antimicrobial and Antibiofilm Activity:
               Repair. Adv Sci, 5:1700817.                         A Mini-Review. Materials (Basel), 11:1–11.
               https://doi.org/10.1002/advs.201700817              https://doi.org/10.3390/ma11020326
           14.  Nyberg E, Rindone A, Dorafshar A, et al., 2017, Comparison   24.  Lyyra  I,  Leino  K,  Hukka  T,  et al., 2021, Impact  of Glass
               of 3D-Printed Poly-ϵ-Caprolactone Scaffolds Functionalized   Composition  on  Hydrolytic  Degradation  of  Polylactide/
               with  Tricalcium  Phosphate,  Hydroxyapatite,  Bio-Oss,  or   Bioactive Glass Composites. Materials (Basel), 14:1–20.
               Decellularized Bone Matrix. Tissue Eng Part A, 23:503–14.     https://doi.org/10.3390/ma14030667
               https://doi.org/10.1089/ten.tea.2016.0418       25.  Ng WL, Chua CK, Shen YF, 2019, Print Me An Organ! Why
           15.  Scaffaro R, Lopresti F, Botta L, et al., 2016, Integration of   We Are Not There Yet. Prog Polym Sci, 97:101145.
               PCL and PLA in a Monolithic Porous Scaffold for Interface      https://doi.org/10.1016/j.progpolymsci.2019.101145
               Tissue Engineering. J Mech Behav Biomed Mater, 63:303–13.  26.  Yang Y, Wang G, Liang H, et al., 2019, Additive Manufacturing
               https://doi.org/10.1016/j.jmbbm.2016.06.021         of Bone Scaffolds. Int J Bioprint, 5:1–25.
           16.  Poh PS, Chhaya MP, Wunner FM, et al., 2016, Polylactides in      https://doi.org/10.18063/IJB.v5i1.148
               Additive Biomanufacturing. Adv Drug Deliv Rev, 107:228–46.  27.  Qu H, 2020,  Additive  Manufacturing  for  Bone  Tissue
               https://doi.org/10.1016/j.addr.2016.07.006          Engineering Scaffolds. Mater Today Commun, 24:101024.
           17.  Ojansivu M, Wang X, Hyväri L, et al., 2018, Bioactive Glass      https://doi.org/10.1016/j.mtcomm.2020.101024
               Induced  Osteogenic  Differentiation  of  Human Adipose  Stem   28.  Vergnol G, Ginsac N, Rivory P,  et al., 2016,  In Vitro and
               Cells is Dependent on Cell  Attachment Mechanism and   In Vivo Evaluation of a Polylactic  Acid-Bioactive  Glass
               Mitogen-Activated Protein Kinases. Eur Cells Mater, 35:54–72.  Composite for Bone Fixation Devices. J Biomed Mater Res B
               https://doi.org/10.22203/eCM.v035a05                Appl Biomater, 104:180–91.
           18.  El-Rashidy  AA, Roether  JA, Harhaus L,  et  al., 2017,      https://doi.org/10.1002/jbm.b.33364
               Regenerating Bone with Bioactive Glass Scaffolds: A Review   29.  Maquet V, Boccaccini AR, Pravata  L,  et al., 2004, Porous
               of In Vivo Studies in Bone Defect Models. Acta Biomater,   poly(α-hydroxyacid)/Bioglass    Composite   Scaffolds
                                                                                        ®
               62:1–28.                                            for  Bone  Tissue  Engineering.  I:  Preparation  and  In  Vitro
               https://doi.org/10.1016/j.actbio.2017.08.030        Characterisation. Biomaterials, 25:4185–94.
           19.  Popa AC, Stan GE, Husanu MA, et al., 2017, Bioglass Implant-     https://doi.org/10.1016/j.biomaterials.2003.10.082
               Coating  Interactions in Synthetic Physiological  Fluids   30.  Estrada SA,  Armendáriz  IO, García  AT,  et al., 2017,
               with Varying Degrees of Biomimicry. Int J Nanomedicine,   Evaluation of In Vitro Bioactivity of 45S5 Bioactive Glass/
               12:683–707.                                         Poly Lactic Acid Scaffolds Produced by 3D Printing. Int J
               https://doi.org/10.2147/IJN.S123236                 Compos Mater, 7:144–9.
           20.  Saboori A, Rabiee M, Moztarzadeh F, et al., 2009, Synthesis,      https://doi.org/10.5923/j.cmaterials.20170705.03
               Characterization and In Vitro Bioactivity of Sol-Gel-Derived   31.  Alksne M, Kalvaityte M, Simoliunas E, et al., 2020, In Vitro
               SiO -CaO-P O -MgO Bioglass. Mater Sci Eng C, 29:335–40.  Comparison  of  3d  Printed  Polylactic  Acid/Hydroxyapatite
                         5
                       2
                 2
                                       International Journal of Bioprinting (2022)–Volume 8, Issue 4        79
   82   83   84   85   86   87   88   89   90   91   92