Page 87 - IJB-8-4
P. 87
Söhling, et al.
Characterization and In Vivo Osteogenesis. J Mater Chem, https://doi.org/10.1016/j.msec.2008.07.004
22:12288–95. 21. Westhauser F, Karadjian M, Essers C, et al., 2019, Osteogenic
https://doi.org/10.1039/c2jm30566f Differentiation of Mesenchymal Stem Cells is Enhanced in a
11. Trombetta R, Inzana JA, Schwarz EM, et al., 2017, 3D 45S5-Supplemented β-TCP Composite Scaffold: An In-Vitro
Printing of Calcium Phosphate Ceramics for Bone Tissue Comparison of Vitoss and Vitoss BA. PLoS One, 14:1–18.
Engineering and Drug Delivery. Ann Biomed Eng, 45:23–44. https://doi.org/10.1371/journal.pone.0212799
https://doi.org/10.1007/s10439-016-1678-3 22. Al Malat T, Glombitza M, Dahmen J, et al., 2018, The
12. Hwang KS, Choi JW, Kim JH, et al., 2017, Comparative Use of Bioactive Glass S53P4 as Bone Graft Substitute in
Efficacies of Collagen-Based 3D Printed PCL/PLGA/β- the Treatment of Chronic Osteomyelitis and Infected Non-
TCP Composite Block Bone Grafts and Biphasic Calcium Unions a Retrospective Study of 50 Patients Anwendung von
Phosphate Bone Substitute for Bone Regeneration. Materials Bioglas S53P4 als Knochenersatzmaterial Bei Chronischer
(Basel), 10:421. Osteomyelitis Und Infe. Z Orthop Unfall, 156:152–159.
https://doi.org/10.3390/ma10040421 https://doi.org/10.1055/s-0043-124377
13. Pei F, Ping W, Chengde G, et al., 2018, A Multimaterial 23. Drago L, Toscano M, Bottagisio M, 2018, Recent Evidence
Scaffold with Tunable Properties: Toward Bone Tissue on Bioactive Glass Antimicrobial and Antibiofilm Activity:
Repair. Adv Sci, 5:1700817. A Mini-Review. Materials (Basel), 11:1–11.
https://doi.org/10.1002/advs.201700817 https://doi.org/10.3390/ma11020326
14. Nyberg E, Rindone A, Dorafshar A, et al., 2017, Comparison 24. Lyyra I, Leino K, Hukka T, et al., 2021, Impact of Glass
of 3D-Printed Poly-ϵ-Caprolactone Scaffolds Functionalized Composition on Hydrolytic Degradation of Polylactide/
with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Bioactive Glass Composites. Materials (Basel), 14:1–20.
Decellularized Bone Matrix. Tissue Eng Part A, 23:503–14. https://doi.org/10.3390/ma14030667
https://doi.org/10.1089/ten.tea.2016.0418 25. Ng WL, Chua CK, Shen YF, 2019, Print Me An Organ! Why
15. Scaffaro R, Lopresti F, Botta L, et al., 2016, Integration of We Are Not There Yet. Prog Polym Sci, 97:101145.
PCL and PLA in a Monolithic Porous Scaffold for Interface https://doi.org/10.1016/j.progpolymsci.2019.101145
Tissue Engineering. J Mech Behav Biomed Mater, 63:303–13. 26. Yang Y, Wang G, Liang H, et al., 2019, Additive Manufacturing
https://doi.org/10.1016/j.jmbbm.2016.06.021 of Bone Scaffolds. Int J Bioprint, 5:1–25.
16. Poh PS, Chhaya MP, Wunner FM, et al., 2016, Polylactides in https://doi.org/10.18063/IJB.v5i1.148
Additive Biomanufacturing. Adv Drug Deliv Rev, 107:228–46. 27. Qu H, 2020, Additive Manufacturing for Bone Tissue
https://doi.org/10.1016/j.addr.2016.07.006 Engineering Scaffolds. Mater Today Commun, 24:101024.
17. Ojansivu M, Wang X, Hyväri L, et al., 2018, Bioactive Glass https://doi.org/10.1016/j.mtcomm.2020.101024
Induced Osteogenic Differentiation of Human Adipose Stem 28. Vergnol G, Ginsac N, Rivory P, et al., 2016, In Vitro and
Cells is Dependent on Cell Attachment Mechanism and In Vivo Evaluation of a Polylactic Acid-Bioactive Glass
Mitogen-Activated Protein Kinases. Eur Cells Mater, 35:54–72. Composite for Bone Fixation Devices. J Biomed Mater Res B
https://doi.org/10.22203/eCM.v035a05 Appl Biomater, 104:180–91.
18. El-Rashidy AA, Roether JA, Harhaus L, et al., 2017, https://doi.org/10.1002/jbm.b.33364
Regenerating Bone with Bioactive Glass Scaffolds: A Review 29. Maquet V, Boccaccini AR, Pravata L, et al., 2004, Porous
of In Vivo Studies in Bone Defect Models. Acta Biomater, poly(α-hydroxyacid)/Bioglass Composite Scaffolds
®
62:1–28. for Bone Tissue Engineering. I: Preparation and In Vitro
https://doi.org/10.1016/j.actbio.2017.08.030 Characterisation. Biomaterials, 25:4185–94.
19. Popa AC, Stan GE, Husanu MA, et al., 2017, Bioglass Implant- https://doi.org/10.1016/j.biomaterials.2003.10.082
Coating Interactions in Synthetic Physiological Fluids 30. Estrada SA, Armendáriz IO, García AT, et al., 2017,
with Varying Degrees of Biomimicry. Int J Nanomedicine, Evaluation of In Vitro Bioactivity of 45S5 Bioactive Glass/
12:683–707. Poly Lactic Acid Scaffolds Produced by 3D Printing. Int J
https://doi.org/10.2147/IJN.S123236 Compos Mater, 7:144–9.
20. Saboori A, Rabiee M, Moztarzadeh F, et al., 2009, Synthesis, https://doi.org/10.5923/j.cmaterials.20170705.03
Characterization and In Vitro Bioactivity of Sol-Gel-Derived 31. Alksne M, Kalvaityte M, Simoliunas E, et al., 2020, In Vitro
SiO -CaO-P O -MgO Bioglass. Mater Sci Eng C, 29:335–40. Comparison of 3d Printed Polylactic Acid/Hydroxyapatite
5
2
2
International Journal of Bioprinting (2022)–Volume 8, Issue 4 79

