Page 115 - IJB-9-1
P. 115

International Journal of Bioprinting                                           Robotic in situ bioprinting


               dimensional printers. J Manuf Sci Eng, 143: 125001.   38.  Torabi  A,  Khadem  M,  Zareinia  K,  et al.,  2020,  Using  a
                                                                  redundant user interface in teleoperated surgical systems for
               https://doi.org/10.1115/1.4050824
                                                                  task performance enhancement. Robotica, 38: 1880–1894.
            27.  Salehi  MM,  Ataeefard  M,  2019,  Micro  powder  poly
               lactic acid/carbon black composite as a bio printing ink.      https://doi.org/10.1017/-S0263574720000326
               J Composite Mater, 53: 2407–2414.               39.  Zhao Q, Guo J, Hong J, et al., 2021, An enhanced moment-
                                                                  based approach to time-dependent positional reliability
               https://doi.org/10.1177/0021998319828154
                                                                  analysis for robotic manipulators.  Mech Machine Theory,
            28.  Kalan S, Chauhan S, Coelho RF,  et al., 2010, History of   156: 104167.
               robotic surgery. J Robot Surg, 4: 141–147.
                                                                  https://doi.org/10.1016/j.mechmachtheory.2020.104167
               https://doi.org/10.1007/s11701-010-0202-2
                                                               40.  Li L, Shi J, Ma K, et al., 2021, Robotic in situ 3D bio-printing
            29.  Simeunović A, Wolf K, Tierling K, et al., 2022, A surgical   technology for repairing large segmental bone defects. J Adv
               robot for intracorporeal additive manufacturing of tissue   Res, 30: 75–84.
               engineering constructs.  IEEE Robot Automation Lett,      https://doi.org/10.1016/j.jare.2020.11.011
               7: 7495–7502.
                                                               41.  Zhao W, Chen H, Zhang Y,  et al., 2022, Adaptive multi‐
               https://doi.org/10.1109/LRA.2022.3183752           degree‐of‐freedom in situ bioprinting robot for hair‐follicle‐
            30.  Tan B, Kuang S, Li X, et al., 2021, Stereotactic technology for   inclusive skin repair: A  preliminary study conducted in
               3D bioprinting: From the perspective of robot mechanism.   mice. Bioeng Transl Med, 2022: e10303.
               Biofabrication, 13: 043001.                        https://doi.org/10.1002/btm2.10303
               https://doi.org/10.1088/1758-5090/ac1846        42.  Zhang Z, Wu C, Dai C,  et al., 2022, A multi-axis robot-
            31.  Shi E, Lou L, Warburton L,  et al., 2022, 3D printing in   based bioprinting system supporting natural cell function
               combined Cartesian and curvilinear coordinates.  J  Med   preservation and cardiac tissue fabrication. Bioactive Mater,
               Devices, 16: 044502.                               18: 138–150.
               https://doi.org/10.1115/1.4055064                  https://doi.org/10.1016/j.bioactmat.2022.02.009
            32.  Urhal P, Weightman A, Diver C, et al., 2019, Robot assisted   43.  Ding J, Lyu S, Da T,  et al., 2019, Error space estimation
               additive manufacturing: A  review.  Robot  Comput  Integr   of three degrees of freedom planar parallel mechanisms.
               Manuf, 59: 335–345.                                J Mech Robot, 11: 031013.
               https://doi.org/10.1016/j.rcim.2019.05.005         https://doi.org/10.1115/1.4042633
            33.  O’Neill JJ, Johnson RA, Dockter RL,  et al., 2017, 3D   44.  Yang Y, Peng Y, Pu H, et al., 2019, Deployable parallel lower-
               bioprinting directly onto moving human anatomy. In: 2017   mobility manipulators with scissor-like elements.  Mech
               IEEE/RSJ International Conference on Intelligent Robots   Machine Theory, 135: 226–250.
               and Systems (IROS). New Jersey: IEEE. p934–940.      https://doi.org/10.1016/j.mechmachtheory.2019.01.013
               https://doi.org/10.1109/IROS.2017.8202257       45.  Zhu Z, Guo S Z, Hirdler T, et al., 2018, 3D printed functional
            34.  Fortunato GM, Rossi G, Bonatti AF,  et al., 2021, Robotic   and biological materials on moving freeform surfaces. Adv
               platform and path planning algorithm for in situ bioprinting.   Mater, 30: 1707495.
               Bioprinting, 22: e00139.                           https://doi.org/10.1002/adma.201707495
               https://doi.org/10.1016/j.bprint.2021.e00139    46.  Zhao  W,  Xu  T,  2020,  Preliminary  engineering  for  in situ
            35.  Dong H, Du Z, Chirikjian GS, 2013, Workspace density and   in vivo bioprinting: A  novel micro bioprinting platform
               inverse kinematics for planar serial revolute manipulators.   for  in situ  in vivo  bioprinting  at  a  gastric  wound  site.
               Mech Machine Theory, 70: 508–522.                  Biofabrication, 12: 045020.
                                                                  https://doi.org/10.1088/1758-5090/aba4ff
               https://doi.org/10.1016/j.mechmachtheory.2013.08.008
                                                               47.  Cui X, Breitenkamp K, Finn MG, et al., 2012, Direct human
            36.  Hanly EJ, Talamini MA, 2004, Robotic abdominal surgery.
               Am J Surg, 188: 19–26.                             cartilage repair  using three-dimensional bioprinting
                                                                  technology. Tissue Eng Part A, 18: 1304–1312.
               https://doi.org/10.1016/j.amjsurg.2004.08.020
                                                                  https://doi.org/10.1089/ten.tea.-2011.0543
            37.  D’Souza M, Gendreau J, Feng A,  et al., 2019, Robotic-
               assisted spine surgery: History, efficacy, cost, and future   48.  Sun Y, You Y, Jiang W,  et al., 2020, 3D bioprinting dual-
                                                                  factor  releasing  and  gradient-structured  constructs  ready
               trends. Robot Surg Res Rev, 6: 9–23.
                                                                  to implant for anisotropic cartilage regeneration. Sci Adv, 6:
               https://doi.org/10.2147/RSRR.S190720               eaay1422.

            Volume 9 Issue 1 (2023)                        107                      https://doi.org/10.18063/ijb.v9i1.629
   110   111   112   113   114   115   116   117   118   119   120