Page 115 - IJB-9-1
P. 115
International Journal of Bioprinting Robotic in situ bioprinting
dimensional printers. J Manuf Sci Eng, 143: 125001. 38. Torabi A, Khadem M, Zareinia K, et al., 2020, Using a
redundant user interface in teleoperated surgical systems for
https://doi.org/10.1115/1.4050824
task performance enhancement. Robotica, 38: 1880–1894.
27. Salehi MM, Ataeefard M, 2019, Micro powder poly
lactic acid/carbon black composite as a bio printing ink. https://doi.org/10.1017/-S0263574720000326
J Composite Mater, 53: 2407–2414. 39. Zhao Q, Guo J, Hong J, et al., 2021, An enhanced moment-
based approach to time-dependent positional reliability
https://doi.org/10.1177/0021998319828154
analysis for robotic manipulators. Mech Machine Theory,
28. Kalan S, Chauhan S, Coelho RF, et al., 2010, History of 156: 104167.
robotic surgery. J Robot Surg, 4: 141–147.
https://doi.org/10.1016/j.mechmachtheory.2020.104167
https://doi.org/10.1007/s11701-010-0202-2
40. Li L, Shi J, Ma K, et al., 2021, Robotic in situ 3D bio-printing
29. Simeunović A, Wolf K, Tierling K, et al., 2022, A surgical technology for repairing large segmental bone defects. J Adv
robot for intracorporeal additive manufacturing of tissue Res, 30: 75–84.
engineering constructs. IEEE Robot Automation Lett, https://doi.org/10.1016/j.jare.2020.11.011
7: 7495–7502.
41. Zhao W, Chen H, Zhang Y, et al., 2022, Adaptive multi‐
https://doi.org/10.1109/LRA.2022.3183752 degree‐of‐freedom in situ bioprinting robot for hair‐follicle‐
30. Tan B, Kuang S, Li X, et al., 2021, Stereotactic technology for inclusive skin repair: A preliminary study conducted in
3D bioprinting: From the perspective of robot mechanism. mice. Bioeng Transl Med, 2022: e10303.
Biofabrication, 13: 043001. https://doi.org/10.1002/btm2.10303
https://doi.org/10.1088/1758-5090/ac1846 42. Zhang Z, Wu C, Dai C, et al., 2022, A multi-axis robot-
31. Shi E, Lou L, Warburton L, et al., 2022, 3D printing in based bioprinting system supporting natural cell function
combined Cartesian and curvilinear coordinates. J Med preservation and cardiac tissue fabrication. Bioactive Mater,
Devices, 16: 044502. 18: 138–150.
https://doi.org/10.1115/1.4055064 https://doi.org/10.1016/j.bioactmat.2022.02.009
32. Urhal P, Weightman A, Diver C, et al., 2019, Robot assisted 43. Ding J, Lyu S, Da T, et al., 2019, Error space estimation
additive manufacturing: A review. Robot Comput Integr of three degrees of freedom planar parallel mechanisms.
Manuf, 59: 335–345. J Mech Robot, 11: 031013.
https://doi.org/10.1016/j.rcim.2019.05.005 https://doi.org/10.1115/1.4042633
33. O’Neill JJ, Johnson RA, Dockter RL, et al., 2017, 3D 44. Yang Y, Peng Y, Pu H, et al., 2019, Deployable parallel lower-
bioprinting directly onto moving human anatomy. In: 2017 mobility manipulators with scissor-like elements. Mech
IEEE/RSJ International Conference on Intelligent Robots Machine Theory, 135: 226–250.
and Systems (IROS). New Jersey: IEEE. p934–940. https://doi.org/10.1016/j.mechmachtheory.2019.01.013
https://doi.org/10.1109/IROS.2017.8202257 45. Zhu Z, Guo S Z, Hirdler T, et al., 2018, 3D printed functional
34. Fortunato GM, Rossi G, Bonatti AF, et al., 2021, Robotic and biological materials on moving freeform surfaces. Adv
platform and path planning algorithm for in situ bioprinting. Mater, 30: 1707495.
Bioprinting, 22: e00139. https://doi.org/10.1002/adma.201707495
https://doi.org/10.1016/j.bprint.2021.e00139 46. Zhao W, Xu T, 2020, Preliminary engineering for in situ
35. Dong H, Du Z, Chirikjian GS, 2013, Workspace density and in vivo bioprinting: A novel micro bioprinting platform
inverse kinematics for planar serial revolute manipulators. for in situ in vivo bioprinting at a gastric wound site.
Mech Machine Theory, 70: 508–522. Biofabrication, 12: 045020.
https://doi.org/10.1088/1758-5090/aba4ff
https://doi.org/10.1016/j.mechmachtheory.2013.08.008
47. Cui X, Breitenkamp K, Finn MG, et al., 2012, Direct human
36. Hanly EJ, Talamini MA, 2004, Robotic abdominal surgery.
Am J Surg, 188: 19–26. cartilage repair using three-dimensional bioprinting
technology. Tissue Eng Part A, 18: 1304–1312.
https://doi.org/10.1016/j.amjsurg.2004.08.020
https://doi.org/10.1089/ten.tea.-2011.0543
37. D’Souza M, Gendreau J, Feng A, et al., 2019, Robotic-
assisted spine surgery: History, efficacy, cost, and future 48. Sun Y, You Y, Jiang W, et al., 2020, 3D bioprinting dual-
factor releasing and gradient-structured constructs ready
trends. Robot Surg Res Rev, 6: 9–23.
to implant for anisotropic cartilage regeneration. Sci Adv, 6:
https://doi.org/10.2147/RSRR.S190720 eaay1422.
Volume 9 Issue 1 (2023) 107 https://doi.org/10.18063/ijb.v9i1.629

