Page 114 - IJB-9-1
P. 114
International Journal of Bioprinting Robotic in situ bioprinting
3. Dilberoglu UM, Gharehpapagh B, Yaman U, et al., 2017, The bioprinting from benchside to bedside? Acta Biomater,
role of additive manufacturing in the era of industry 4.0. 101: 14–25.
Proc Manuf, 11: 545–554.
https://doi.org/10.1016/j.actbio.2019.08.045
https://doi.org/10.1016/j.promfg.2017.07.148
16. Wang M, He J, Liu Y, et al., 2015, The trend towards in vivo
4. Murphy SV, Atala A, 2014, 3D bioprinting of tissues and bioprinting. Int J Bioprint, 1: 15–26.
organs. Nat Biotechnol, 32: 773–785.
https://doi.org/10.18063/IJB.2015.01.001
https://doi.org/10.1038/nbt.2958
17. Ozbolat IT, 2015, Bioprinting scale-up tissue and organ
5. Ma X, Liu J, Zhu W, et al., 2018, 3D bioprinting of functional constructs for transplantation. Trends Biotechnol,
tissue models for personalized drug screening and in vitro 33: 395–400.
disease modeling. Adv Drug Deliv Rev, 132: 235–251.
https://doi.org/10.1016/j.tibtech.2015.04.005
https://doi.org/10.1016/j.-addr.2018.06.011
18. Ding H, Chang RC, 2018, Simulating image-guided in situ
6. Pati F, Gantelius J, Svahn HA, 2016, 3D bioprinting of tissue/ bioprinting of a skin graft onto a phantom burn wound bed.
organ models. Angew Chem Int Ed Engl, 55: 4650–4665. Addit Manuf, 22: 708–719.
https://doi.org/10.1002/anie.201505062 https://doi.org/10.1016/j.addma.2018.06.022
7. Peng W, Datta P, Ayan B, et al., 2017, 3D bioprinting for 19. Samandari M, Quint J, Rodríguez‐delaRosa A, et al., 2022,
drug discovery and development in pharmaceutics. Acta Bioinks and bioprinting strategies for skeletal muscle tissue
Biomater, 57: 26–46. engineering. Adv Mater, 34: 2105883.
https://doi.org/10.1016/j.actbio.2017.05.025 https://doi.org/10.1002/adma.202105883
8. Di Marzio N, Eglin D, Serra T, et al., 2020, Bio-fabrication: 20. Wu Y, Ravnic DJ, Ozbolat IT, 2020, Intraoperative
convergence of 3D bioprinting and nano-biomaterials in bioprinting: Repairing tissues and organs in a surgical
tissue engineering and regenerative medicine. Front Bioeng setting. Trends Biotechnol, 38: 594–605.
Biotechnol, 8: 326.
https://doi.org/10.1016/j.tibtech.2020.01.004
https://doi.org/10.3389/fbioe.2020.00326
21. Ozbolat IT, Hospodiuk M, 2016, Current advances and
9. Murphy SV, De Coppi P, Atala A, 2020, Opportunities and future perspectives in extrusion-based bioprinting.
challenges of translational 3D bioprinting. Nat Biomed Eng, Biomaterials, 76: 321–343.
4: 370–380.
https://doi.org/10.1016/j.biomaterials.2015.10.076
https://doi.org/10.1038/s41551-019-0471-7
22. Sun H, Jia Y, Dong H, et al., 2020, Combining additive
10. Sun W, Starly B, Daly AC, et al., 2020, The bioprinting manufacturing with microfluidics: An emerging method
roadmap. Biofabrication, 12: 022002. for developing novel organs-on-chips. Curr Opin Chem Eng,
28: 1–9.
https://doi.org/10.1088/1758-5090/ab5158
https://doi.org/10.1016/j.coche.2019.10.006
11. Samandari M, Mostafavi A, Quint J, et al., 2022, In situ
bioprinting: Intraoperative implementation of regenerative 23. Dou C, Perez V, Qu J, et al., 2021, A state‐of‐the‐art review
medicine. Trends Biotechnol, 40: 1229–1247. of laser‐assisted bioprinting and its future research trends.
Chem Bio Eng Rev, 8: 517–534.
https://doi.org/10.1016/j.tibtech.2022.03.009
https://doi.org/10.1002/cben.202000037
12. Campbell PG, Weiss LE, 2007, Tissue engineering with the
aid of inkjet printers. Expert Opin Biol Ther, 7: 1123–1127. 24. Jentsch S, Nasehi R, Kuckelkorn C, et al., 2021, Multiscale
3D bioprinting by nozzle‐free acoustic droplet ejection.
https://doi.org/10.1517/14712598.7.8.1123
Small Methods, 5: 2000971.
13. Hong N, Yang GH, Lee J H, et al., 2018, 3D bioprinting and
its in vivo applications. J Biomed Mater Res B Appl Biomater, https://doi.org/10.1002/smtd.202000971
106: 444–459. 25. Masaeli E, Marquette C, 2020, Direct-write bioprinting
approach to construct multilayer cellular tissues. Front
https://doi.org/10.1002/-jbm.b.33826
Bioeng Biotechnol, 7: 478.
14. Prendergast ME, Burdick JA, 2020, Recent advances in
enabling technologies in 3D printing for precision medicine. https://doi.org/10.3389/fbioe.2019.00478
Adv Mater, 32: 1902516. 26. Darwish LR, El-Wakad MT, Farag MM, 2021, Towards an
ultra-affordable three-dimensional bioprinter: A heated
https://doi.org/10.1002/adma.201902516
inductive-enabled syringe pump extrusion multifunction
15. Singh S, Choudhury D, Yu F, et al., 2020, In situ bioprinting- module for open-source fused deposition modeling three-
Volume 9 Issue 1 (2023) 106 https://doi.org/10.18063/ijb.v9i1.629

