Page 116 - IJB-9-1
P. 116

International Journal of Bioprinting                                           Robotic in situ bioprinting


               https://doi.org/-10.1126/sciadv.aay1422            https://doi.org/10.1088/1758-5090/9/1/015006
            49.  Ma K, Zhao T, Yang L, et al., 2020, Application of robotic-  54.  Albanna M, Binder KW, Murphy SV,  et  al., 2019,  In  situ
               assisted in situ 3D printing in cartilage regeneration with   bioprinting of autologous skin cells accelerates wound
               HAMA hydrogel: An in vivo study. J Adv Res, 23: 123–132.   healing  of extensive excisional full-thickness wounds.  Sci
                                                                  Rep, 9: 1586.
               https://doi.org/10.1016/j.jare.2020.01.010
                                                                  https://doi.org/10.1038/s41598-018-38366-w
            50.  Keriquel V, Oliveira H, Rémy M,  et al., 2017,  In situ
               printing of mesenchymal stromal  cells, by laser-assisted   55.  Chen Y, Zhang J, Liu X, et al., 2020, Noninvasive in vivo 3D
               bioprinting, for in vivo bone regeneration applications. Sci   bioprinting. Sci Adv, 6: eaba7406.
               Rep, 7: 1–10.                                      https://doi.org/10.1126/sciadv.aba7406
               https://doi.org/10.1038/s41598-017-01914-x      56.  Lee VK, Lanzi AM, Ngo H, et al., 2014, Generation of multi-

            51.  Lipskas J, Deep K, Yao W, 2019, Robotic-assisted 3D bio-  scale vascular network system within 3D hydrogel using 3D
               printing for repairing bone and cartilage defects through a   bio-printing technology. Cell Mol Bioeng, 7: 460–472.
               minimally invasive approach. Sci Rep, 9: 1–9.      https://doi.org/10.1007/s12195-014-0340-0
               https://doi.org/10.1038/s41598-019-38972-2      57.  Owens CM, Marga F, Forgacs G, et al., 2013, Biofabrication

            52.  Lee V, Singh G, Trasatti JP, et al., 2014, Design and fabrication   and  testing  of  a fully cellular  nerve  graft.  Biofabrication,
               of human skin by three-dimensional bioprinting. Tissue Eng   5: 045007.
               Part C Methods, 20: 473–484.                       https://doi.org/10.1088/1758-5082/5/4/045007
               https://doi.org/10.1089/ten.tec.2013.0335       58.  Zhou C, Yang Y, Wang J,  et al., 2021, Ferromagnetic soft
                                                                  catheter robots for minimally invasive bioprinting.  Nat
            53.  Cubo N, Garcia M, Del Canizo JF, et al., 2016, 3D bioprinting
               of functional human skin: Production and in vivo analysis.   Commun, 12: 5072.
               Biofabrication, 9: 015006.                         https://doi.org/10.1038/s41467-021-25386-w














































            Volume 9 Issue 1 (2023)                        108                      https://doi.org/10.18063/ijb.v9i1.629
   111   112   113   114   115   116   117   118   119   120   121