Page 304 - IJB-9-1
P. 304

International Journal of Bioprinting             3D printable conductive composite inks for biocompatible electrodes


            19.  Ravanbakhsh H, Bao G, Luo Z, et al., 2021, Composite   nanotubes: Mixing, sonication, stabilization, and composite
               inks for extrusion printing of biological and biomedical   properties. Polymers, 4: 275–295.
               constructs. ACS Biomater Sci Eng, 7: 4009–4026.
                                                               33.  Lewis JA, 2000, Colloidal processing of ceramics.  J Am
               https://doi.org/10.1021/acsbiomaterials.0c01158    Ceram Soc, 83:2341–59.
            20.  Guimarães CF, Gasperini L, Marques AP, et al., 2020, The      https://doi.org/10.1111/j.1151-2916.2000.tb01560.x
               Stiffness of living tissues and its implications for tissue   34.  Ma PC, Siddiqui NA, Marom G, et al., 2010, Dispersion and
               engineering. Nat Rev Mater, 5: 351–370.
                                                                  functionalization of carbon nanotubes for polymer-based
               https://doi.org/10.1038/s41578-019-0169-1          nanocomposites: a review. Compos Part A: Appl Sci Manuf,
                                                                  41: 1345–1367.
            21.  Sun X, Sun H, Li H,  et  al., 2013, Developing polymer
               composite materials: Carbon nanotubes or graphene? Adv      https://doi.org/10.1016/j.compositesa.2010.07.003
               Mater, 25: 5153–5176.
                                                               35.  Li MC, Wu Q, Moon RJ, et al., 2021, Rheological aspects of
               https://doi.org/10.1002/adma.201301926             cellulose nanomaterials: Governing factors and emerging
                                                                  applications. Adv Mater, 33: 2006052.
            22.  Schiavone G, Kang X, Fallegger F, et al., 2020, Guidelines
               to study and develop soft electrode systems for neural      https://doi.org/10.1002/adma.202006052
               stimulation. Neuron, 108: 238–258.
                                                               36.  Genovese DB, 2012, Shear rheology of hard-sphere,
               https://doi.org/10.1016/j.neuron.2020.10.010       dispersed, and aggregated suspensions, and filler-matrix
                                                                  composites. Adv Colloid Interface Sci, 171–2: 1–16.
            23.  Chen FM, Liu X, 2016, Advancing biomaterials of human
               origin for tissue engineering. Prog Polym Sci, 53: 86–168.     https://doi.org/10.1016/j.cis.2011.12.005
               https://doi.org/10.1016/j.progpolymsci.2015.02.004  37.  Rueda MM, Auscher MC, Fulchiron R, et al., 2017, Rheology
                                                                  and applications of highly filled polymers: A review of
            24.  Christopherson GT, de Vasconcellos JF, Dunn JC, et al.,
               2021, Three-dimensional modeling of the structural   current understanding. Prog Polym Sci, 66: 22–53.
               microenvironment in post-traumatic war wounds.  Tissue      https://doi.org/10.1016/j.progpolymsci.2016.12.007
               Eng Regen Med, 18: 963–973.
                                                               38.  O’ Mahony C, Haq EU, Silien C, et al., 2019, Rheological
               https://doi.org/10.1007/s13770-021-00355-y         issues in carbon-based inks for additive manufacturing.
                                                                  Micromachines (Basel), 10: 99.
            25.  Skylar-Scott MA, Mueller J, Visser CW, et  al., 2019,
               Voxelated soft matter via multimaterial multinozzle 3D      https://doi.org/10.3390/mi10020099
               printing. Nature, 575: 330–335.
                                                               39.  Fonseca FC, Muccillo R, de Florio DZ, et al., 2007, Mixed
               https://doi.org/10.1038/s41586-019-1736-8          ionic-electronic conductivity in yttria-stabilized zirconia/
                                                                  carbon nanotube composites. Appl Phys Lett, 91: 243107.
            26.  Gillispie G, Prim P, Copus J, et al., 2020, Assessment
               methodologies for extrusion-based bioink printability.      https://doi.org/10.1063/1.2821373
               Biofabrication, 12: 022003.
                                                               40.  Mohd Radzuan NA, Sulong AB, Sahari J, 2017, A review
               https://doi.org/10.1088/1758-5090/ab6f0d           of electrical conductivity models for conductive polymer
                                                                  composite. Int J Hydrogen Energy, 42: 9262–9273.
            27.  Franco JM, Partal P, 2010, The newtonian fluid. Rheology, 1:
               74–95.                                             https://doi.org/10.1016/j.ijhydene.2016.03.045
            28.  Viswanath DS, Ghosh TK, Prasad DH, et al., 2007, Viscosity   41.  Li C, Thostenson ET, Chou TW, 2007, Dominant role of
               of liquids: theory, estimation, experiment, and data. Berlin,   tunneling resistance in the electrical conductivity of carbon
               germany: Springer science and business media.      nanotube–based composites. Appl Phys Lett, 91: 223114.
            29.  Cooke ME, Rosenzweig DH, 2021, The rheology of direct      https://doi.org/10.1063/1.2819690
               and suspended extrusion bioprinting.  APL  Bioeng, 5:   42.  Berhan L, Sastry AM, 2007, Modeling Percolation in High-
               011502.
                                                                  Aspect-Ratio Fiber Systems. I. Soft-Core Versus Hard-Core
               https://doi.org/10.1063/5.0031475                  Models. Phys Rev E, 75:041120.
            30.  Ferry JD, 1980, Viscoelastic properties of polymers.      https://doi.org/10.1103/PhysRevE.75.041120
               Hoboken, new jersey: John Wiley and Sons.
                                                               43.  Bauhofer W, Kovacs JZ, 2009, A review and analysis
            31.  Mewis J, Wagner NJ, 2009, Thixotropy. Adv Colloid Interface   of electrical percolation in carbon nanotube polymer
               Sci, 147–148: 214–227.                             composites. Compos Sci Technol, 69: 1486–1498.
               https://doi.org/10.1016/j.cis.2008.09.005          https://doi.org/10.1016/j.compscitech.2008.06.018
            32.  Huang YY, Terentjev EM, 2012, Dispersion of carbon   44.  Leblanc JL, 2002, Rubber-filler interactions and rheological


            Volume 9 Issue 1 (2023)                        296                      https://doi.org/10.18063/ijb.v9i1.643
   299   300   301   302   303   304   305   306   307   308   309