Page 306 - IJB-9-1
P. 306

International Journal of Bioprinting             3D printable conductive composite inks for biocompatible electrodes


               Appl Mater Today, 16: 482–492.                     https://doi.org/10.1002/adma.201400334
               https://doi.org/10.1016/j.apmt.2019.06.016      77.  Merrill DR, 2010, The electrochemistry of charge injection
                                                                  at the electrode/tissue interface. In: Zhou d, greenbaum e,
            67.  Boularaoui S, Shanti A, Lanotte M, et al., 2021, Nanocomposite
               conductive bioinks based on low-concentration GelMA and   editors. Implantable neural prostheses 2: Techniques and
               mxene nanosheets/gold nanoparticles providing enhanced   engineering approaches. New York: Springer. p85–p138.
               printability of functional skeletal muscle tissues.  ACS   78.  Merrill  DR,  Bikson  M,  Jefferys  JG,  2005,  Electrical
               Biomater Sci Eng, 7: 5810–5822.                    stimulation of excitable tissue: Design of efficacious and safe
               https://doi.org/10.1021/acsbiomaterials.1c01193    protocols. J Neurosci Methods, 141: 171–198.
            68.  Shin SR, Farzad R, Tamayol A, et al., 2016, A bioactive      https://doi.org/10.1016/j.jneumeth.2004.10.020
               carbon nanotube-based ink for printing 2D and 3D flexible   79.  Nunes SS, Miklas JW, Liu J, et al., 2013, Biowire: A platform
               electronics. Adv Mater, 28: 3280–3289.             for maturation of human pluripotent stem cell-derived
               https://doi.org/10.1002/adma.201506420             cardiomyocytes. Nat Methods, 10: 781–787.
            69.  Bordoni M, Karabulut E, Kuzmenko V, et al., 2020,      https://doi.org/10.1038/nmeth.2524
               3D printed conductive nanocellulose scaffolds for the   80.  Shakeel M, Khan WA, Rahman K, 2017, Fabrication of cost
               differentiation of human neuroblastoma cells. Cells, 9: 682.  effective and high sensitivity resistive strain gauge using diw
               https://doi.org/10.3390/cells9030682               technique. Sens Actuators A Phys, 258: 123–130.
            70.  Park  J, Jeon N,  Lee  S, et al.,  2022, Conductive hydrogel      https://doi.org/10.1016/j.sna.2017.03.003
               constructs with three-dimensionally connected  graphene   81.  Leppik L, Oliveira KM, Bhavsar MB, et al., 2020, Electrical
               networks for biomedical applications.  Chem Eng J, 446:   stimulation in bone tissue engineering treatments.  Eur J
               137344.                                            Trauma Emerg Surg, 46: 231–244.
               https://doi.org/10.1016/j.cej.2022.137344          https://doi.org/10.1007/s00068-020-01324-1
            71.  Asulin M, Michael I, Shapira A, et al., 2021, One-step   82.  Talikowska M, Fu X, Lisak G, 2019, Application of
               3D printing of heart patches with built-in electronics for   conducting polymers to wound care and skin tissue
               performance regulation. Adv Sci, 8: 2004205.       engineering: A review. Biosens Bioelectron, 135: 50–63.
               https://doi.org/10.1002/advs.202004205             https://doi.org/10.1016/j.bios.2019.04.001
            72.  Lind JU, Busbee TA, Valentine AD, et al., 2017, Instrumented   83.  Liebman C, Vu TM, Phillips A, et al., 2021, Altered β-cell
               cardiac microphysiological devices via multimaterial three-  calcium dynamics via electric field exposure. Ann Biomed
               dimensional printing. Nat Mater, 16: 303–308.      Eng, 49: 106–114.
               https://doi.org/10.1038/nmat4782                   https://doi.org/10.1007/s10439-020-02517-w
            73.  Orangi J, Hamade F, Davis VA, et al., 2020, 3D printing of   84.  Yu J, Zhang Y, Yan J, et al., 2018, Advances in bioresponsive
               additive-free 2D Ti3C2Tx (MXene) ink for fabrication of   closed-loop drug delivery systems. Int J Pharm, 544: 350–357.
               micro-supercapacitors with ultra-high energy densities.
               ACS Nano, 14: 640–650.                             https://doi.org/10.1016/j.ijpharm.2017.11.064
               https://doi.org/10.1021/acsnano.9b07325         85.  Tetsuka H, Pirrami L, Wang T, et al., 2022, Wirelessly
                                                                  powered 3D printed hierarchical biohybrid robots with
            74.  Naguib M, Mochalin VN, Barsoum MW, et al., 2014,   multiscale mechanical properties.  Adv Funct Mater, 32:
               25  anniversary article: MXenes: A new family of two-  2202674.
                 th
               dimensional materials. Adv Mater, 26: 992–1005.
                                                                  https://doi.org/10.1002/adfm.202202674
               https://doi.org/10.1002/adma.201304138
                                                               86.  Mirvakili SM, Langer R, 2021, Wireless on-demand drug
            75.  Nasrallah GK, Al-Asmakh M, Rasool K, et al., 2018,   delivery. Nat Electron, 4:464–77.
               Ecotoxicological assessment of Ti3C2Tx (MXene) using a
               zebrafish embryo model. Environ Sci Nano, 5: 1002–1011.     https://doi.org/10.1038/s41928-021-00614-9
               https://doi.org/10.1039/C7EN01239J              87.  Sun P, Zhang J, Zhu X, et al., Directly printed interconnection
                                                                  wires between layers for 3D integrated stretchable
            76.  Muth JT, Vogt DM, Truby RL, et al., 2014, Embedded
               3D printing of strain sensors within highly stretchable   electronics. Adv Mater Technol, 7: 2200302.
               elastomers. Adv Mater, 26: 6307–6312.              https://doi.org/10.1002/admt.202200302







            Volume 9 Issue 1 (2023)                        298                      https://doi.org/10.18063/ijb.v9i1.643
   301   302   303   304   305   306   307   308   309   310   311