Page 305 - IJB-9-1
P. 305

International Journal of Bioprinting             3D printable conductive composite inks for biocompatible electrodes


               properties in filled compounds. Prog Polym Sci, 27: 627–687.     https://doi.org/10.1007/s11664-011-1761-3
               https://doi.org/10.1016/S0079-6700(01)00040-5   56.  Li  Y,  Pavanram  P,  Zhou  J, et al.,  2020,  Additively
                                                                  manufactured biodegradable porous zinc.  Acta Biomater,
            45.  Ravanbakhsh H, Bao G, Latifi N, et al., 2019, Carbon   101: 609–23.
               nanotube composite hydrogels for vocal fold tissue
               engineering: biocompatibility, rheology, and porosity. Mater      https://doi.org/10.1016/j.actbio.2019.10.034
               Sci Eng C, 103: 109861.                         57.  Ahn BY, Duoss EB, Motala MJ, et al., 2009, Omnidirectional
               https://doi.org/10.1016/j.msec.2019.109861         printing of  flexible, stretchable, and  spanning  silver
                                                                  microelectrodes. Science, 323: 1590–1593.
            46.  Islam RR, Md. Hasan A, Md. Abu J, et al., 2019, Carbon
               nanotubes agglomeration  in reinforced composites:      https://doi.org/10.1126/science.1168375
               A review. AIMS Mater Sci, 6: 756–780.           58.  Britton J, Krukiewicz K, Chandran M, et al., 2021, A flexible

               https://doi.org/10.3934/matersci.2019.5.756        strain-responsive sensor fabricated from a biocompatible
                                                                  electronic ink via an additive-manufacturing process. Mater
            47.  Mora A, Verma P, Kumar S, 2020, Electrical conductivity of   Des, 206: 109700.
               cnt/polymer  composites:  3D  printing,  measurements  and
               modeling. Compos Part B Eng, 183: 107600.          https://doi.org/10.1016/j.matdes.2021.109700

               https://doi.org/10.1016/j.compositesb.2019.107600  59.  Farizhandi AA, Khalajabadi SZ, Krishnadoss V, et al., 2020,
                                                                  Synthesized biocompatible and conductive ink for 3D
            48.  Gong S, Zhu ZH, Li J,  et  al., 2014, Modeling and   printing of flexible electronics. J Mech Behav Biomed Mater,
               characterization  of  carbon  nanotube  agglomeration  effect   110: 103960.
               on electrical conductivity of carbon nanotube polymer
               composites. J Appl Phys, 116: 194306.              https://doi.org/10.1016/j.jmbbm.2020.103960
                                                               60.  Doh J, Lee J, 2016, Prediction of the mechanical behavior
               https://doi.org/10.1063/1.4902175
                                                                  of double walled-cnts using a molecular mechanics-based
            49.  Liu CX, Choi JW, 2012, Improved dispersion of    finite element method: effects of chirality.  Comput Struct,
               carbon nanotubes in polymers at high concentrations.   169: 91–100.
               Nanomaterials, 2: 329–347.
                                                                  https://doi.org/10.1016/j.compstruc.2016.03.006
            50.  Zhu K,  Shin SR, van  Kempen T, et al., 2017,  Gold
               nanocomposite bioink for printing 3D cardiac constructs.   61.  Doh J, Park SI, Yang Q, et al., 2019, The effect of carbon
                                                                  nanotube chirality on the electrical conductivity of
               Adv Funct Mater, 27: 1605352.
                                                                  polymer nanocomposites considering tunneling resistance.
               https://doi.org/10.1002/adfm.201605352             Nanotechnology, 30: 465701.
            51.  Sahoo NG, Rana S, Cho JW,  et  al., 2010, Polymer      https://doi.org/10.1088/1361-6528/ab3b79
               nanocomposites based on functionalized carbon nanotubes.   62.  Giavasis I, Harvey LM, McNeil B, 2000, Gellan gum. Crit
               Prog Polym Sci, 35: 837–867.
                                                                  Rev Biotechnol, 20: 177–211.
               https://doi.org/10.1016/j.progpolymsci.2010.03.002     https://doi.org/10.1080/07388550008984169
            52.  Pidcock GC, in het Panhuis M, 2012, Extrusion printing of   63.  Pedrotty DM, Kuzmenko V, Karabulut E, et al., 2019,
               flexible electrically conducting carbon nanotube networks.   Three-dimensional printed biopatches with conductive ink
               Adv Funct Mater, 22: 4790–4800.                    facilitate cardiac conduction when applied to disrupted
               https://doi.org/10.1002/adfm.201200724             myocardium. Circ: Arrhythm Electrophysiol, 12: e006920.
            53.  Punetha VD, Rana S, Yoo HJ, et al., 2017, Functionalization      https://doi.org/10.1161/CIRCEP.118.006920
               of  carbon  nanomaterials  for  advanced  polymer  64.  Jakus AE, Secor EB, Rutz AL, et al., 2015, Three-dimensional
               nanocomposites: a comparison study between cnt and   printing of high-content  graphene scaffolds for electronic
               graphene. Prog Polym Sci, 67: 1–47.                and biomedical applications. ACS Nano, 9: 4636–4648.
               https://doi.org/10.1016/j.progpolymsci.2016.12.010     https://doi.org/10.1021/acsnano.5b01179
            54.  Ravanbakhsh H, Bao G, Mongeau L, 2020, Carbon   65.  García-Tuñón E, Feilden E, Zheng H, et al., 2017, Graphene
               nanotubes promote cell migration in hydrogels. Sci Rep, 10:   oxide: an all-in-one processing additive for 3D printing.
               2543.                                              ACS Appl Mater Interfaces, 9: 32977–32989.
               https://doi.org/10.1038/s41598-020-59463-9         https://doi.org/10.1021/acsami.7b07717
            55.  Jung I, Jo YH, Kim I, et al., 2012, A simple process for   66.  Shi G, Lowe SE, Teo AJ, et al., 2019, A versatile PDMS
               synthesis of ag nanoparticlesand sintering of conductive ink   submicrobead/graphene oxide nanocomposite ink for the
               for use in printed electronics. J Electron Mater, 41: 115–21.  direct ink writing of wearable micron-scale tactile sensors.


            Volume 9 Issue 1 (2023)                        297                      https://doi.org/10.18063/ijb.v9i1.643
   300   301   302   303   304   305   306   307   308   309   310