Page 305 - IJB-9-1
P. 305
International Journal of Bioprinting 3D printable conductive composite inks for biocompatible electrodes
properties in filled compounds. Prog Polym Sci, 27: 627–687. https://doi.org/10.1007/s11664-011-1761-3
https://doi.org/10.1016/S0079-6700(01)00040-5 56. Li Y, Pavanram P, Zhou J, et al., 2020, Additively
manufactured biodegradable porous zinc. Acta Biomater,
45. Ravanbakhsh H, Bao G, Latifi N, et al., 2019, Carbon 101: 609–23.
nanotube composite hydrogels for vocal fold tissue
engineering: biocompatibility, rheology, and porosity. Mater https://doi.org/10.1016/j.actbio.2019.10.034
Sci Eng C, 103: 109861. 57. Ahn BY, Duoss EB, Motala MJ, et al., 2009, Omnidirectional
https://doi.org/10.1016/j.msec.2019.109861 printing of flexible, stretchable, and spanning silver
microelectrodes. Science, 323: 1590–1593.
46. Islam RR, Md. Hasan A, Md. Abu J, et al., 2019, Carbon
nanotubes agglomeration in reinforced composites: https://doi.org/10.1126/science.1168375
A review. AIMS Mater Sci, 6: 756–780. 58. Britton J, Krukiewicz K, Chandran M, et al., 2021, A flexible
https://doi.org/10.3934/matersci.2019.5.756 strain-responsive sensor fabricated from a biocompatible
electronic ink via an additive-manufacturing process. Mater
47. Mora A, Verma P, Kumar S, 2020, Electrical conductivity of Des, 206: 109700.
cnt/polymer composites: 3D printing, measurements and
modeling. Compos Part B Eng, 183: 107600. https://doi.org/10.1016/j.matdes.2021.109700
https://doi.org/10.1016/j.compositesb.2019.107600 59. Farizhandi AA, Khalajabadi SZ, Krishnadoss V, et al., 2020,
Synthesized biocompatible and conductive ink for 3D
48. Gong S, Zhu ZH, Li J, et al., 2014, Modeling and printing of flexible electronics. J Mech Behav Biomed Mater,
characterization of carbon nanotube agglomeration effect 110: 103960.
on electrical conductivity of carbon nanotube polymer
composites. J Appl Phys, 116: 194306. https://doi.org/10.1016/j.jmbbm.2020.103960
60. Doh J, Lee J, 2016, Prediction of the mechanical behavior
https://doi.org/10.1063/1.4902175
of double walled-cnts using a molecular mechanics-based
49. Liu CX, Choi JW, 2012, Improved dispersion of finite element method: effects of chirality. Comput Struct,
carbon nanotubes in polymers at high concentrations. 169: 91–100.
Nanomaterials, 2: 329–347.
https://doi.org/10.1016/j.compstruc.2016.03.006
50. Zhu K, Shin SR, van Kempen T, et al., 2017, Gold
nanocomposite bioink for printing 3D cardiac constructs. 61. Doh J, Park SI, Yang Q, et al., 2019, The effect of carbon
nanotube chirality on the electrical conductivity of
Adv Funct Mater, 27: 1605352.
polymer nanocomposites considering tunneling resistance.
https://doi.org/10.1002/adfm.201605352 Nanotechnology, 30: 465701.
51. Sahoo NG, Rana S, Cho JW, et al., 2010, Polymer https://doi.org/10.1088/1361-6528/ab3b79
nanocomposites based on functionalized carbon nanotubes. 62. Giavasis I, Harvey LM, McNeil B, 2000, Gellan gum. Crit
Prog Polym Sci, 35: 837–867.
Rev Biotechnol, 20: 177–211.
https://doi.org/10.1016/j.progpolymsci.2010.03.002 https://doi.org/10.1080/07388550008984169
52. Pidcock GC, in het Panhuis M, 2012, Extrusion printing of 63. Pedrotty DM, Kuzmenko V, Karabulut E, et al., 2019,
flexible electrically conducting carbon nanotube networks. Three-dimensional printed biopatches with conductive ink
Adv Funct Mater, 22: 4790–4800. facilitate cardiac conduction when applied to disrupted
https://doi.org/10.1002/adfm.201200724 myocardium. Circ: Arrhythm Electrophysiol, 12: e006920.
53. Punetha VD, Rana S, Yoo HJ, et al., 2017, Functionalization https://doi.org/10.1161/CIRCEP.118.006920
of carbon nanomaterials for advanced polymer 64. Jakus AE, Secor EB, Rutz AL, et al., 2015, Three-dimensional
nanocomposites: a comparison study between cnt and printing of high-content graphene scaffolds for electronic
graphene. Prog Polym Sci, 67: 1–47. and biomedical applications. ACS Nano, 9: 4636–4648.
https://doi.org/10.1016/j.progpolymsci.2016.12.010 https://doi.org/10.1021/acsnano.5b01179
54. Ravanbakhsh H, Bao G, Mongeau L, 2020, Carbon 65. García-Tuñón E, Feilden E, Zheng H, et al., 2017, Graphene
nanotubes promote cell migration in hydrogels. Sci Rep, 10: oxide: an all-in-one processing additive for 3D printing.
2543. ACS Appl Mater Interfaces, 9: 32977–32989.
https://doi.org/10.1038/s41598-020-59463-9 https://doi.org/10.1021/acsami.7b07717
55. Jung I, Jo YH, Kim I, et al., 2012, A simple process for 66. Shi G, Lowe SE, Teo AJ, et al., 2019, A versatile PDMS
synthesis of ag nanoparticlesand sintering of conductive ink submicrobead/graphene oxide nanocomposite ink for the
for use in printed electronics. J Electron Mater, 41: 115–21. direct ink writing of wearable micron-scale tactile sensors.
Volume 9 Issue 1 (2023) 297 https://doi.org/10.18063/ijb.v9i1.643

