Page 388 - IJB-9-1
P. 388

International Journal of Bioprinting                          Micro/nano-3D hemostats for rapid wound healing



            194. Peers  S, Montembault  A, Ladaviere C,  2022, Chitosan   207.  Kucharz K, Kristensen K, Johnsen KB, et al., 2021, Post-capillary
               hydrogels incorporating colloids for sustained drug delivery.   venules  are  the  key  locus  for  transcytosis-mediated  brain
               Carbohydr Polym, 275: 118689.                      delivery of therapeutic nanoparticles. Nat Commun, 12: 4121.
            195. Kalantari K, Mostafavi E, Saleh B, et al., 2020, Chitosan/pva   208. Harris  AR,  Wallace  GG,  2017,  Organic  electrodes  and
               hydrogels incorporated with green synthesized cerium oxide   communications with excitable cells. Adv Funct Mater, 28:
               nanoparticles for wound healing applications. Eur Polym J,   1700587.
               134: 109853.
                                                               209. Wang  K,  Frewin  CL,  Esrafilzadeh  D,  et  al.,  2019,  High-
            196. Asghari F, Rabiei Faradonbeh D, Malekshahi ZV,  et al.,   performance  graphene-fiber-based  neural  recording
               2021, Hybrid PCL/chitosan-PEO nanofibrous scaffolds   microelectrodes. Adv Mater, 31: e1805867.
               incorporated with A.  euchroma extract for skin  tissue   210. Maisha N, Rubenstein M, Bieberich CJ, et al., 2021, Getting
               engineering application. Carbohydr Polym, 278: 118926.
                                                                  to the core of it all: nanocapsules to mitigate infusion
            197. Jung HY, Le Thi P, HwangBo KH,  et al., 2021, Tunable   reactions can promote hemostasis and be a platform for
               and high tissue adhesive properties of injectable chitosan   intravenous therapies. Nano Lett, 21: 9069–9076.
               based hydrogels through polymer architecture modulation.   211. Yang X, Wang C, Liu Y, et al., 2021, Inherent antibacterial
               Carbohydr Polym, 261: 117810.
                                                                  and   instant  swelling  ε-poly-lysine/poly(ethylene
            198. Xia L, Wang S, Jiang Z, et al., 2021, Hemostatic performance   glycol) diglycidyl ether superabsorbent for rapid
               of chitosan-based hydrogel and its study on biodistribution   hemostasis and bacterially infected wound healing.  ACS
               and biodegradability in rats.  Carbohydr  Polym, 264:   Appl Mater Interfaces, 13: 36709–36721.
               117965.
                                                               212. Wendels S, Averous L, 2021, Biobased polyurethanes for
            199. Vakilian S, Jamshidi-Adegani F, Al Yahmadi A, et al., 2021,   biomedical applications. Bioact Mater, 6: 1083–1106.
               A competitive nature-derived multilayered scaffold based   213. Xiao M, Yao Y, Fan C,  et al., 2021, Multiple H-bonding
               on chitosan and alginate, for full-thickness wound healing.   chain extender-based polyurethane: Ultrastiffness, hot-melt
               Carbohydr Polym, 262: 117921.
                                                                  adhesion, and 3D printing finger orthosis. J Chem Eng, 433:
            200. Montazerian  H,  Baidya  A,  Haghniaz  R,  et al.,  2021,   133260.
               Stretchable and bioadhesive gelatin methacryloyl-based   214.  Jiang C, Zhang L, Yang Q, et al., 2021, Self-healing polyurethane-
               hydrogels enabled by in situ dopamine polymerization. ACS   elastomer with mechanical tunability for multiple biomedical
               Appl Mater Interfaces, 13: 40290–40301.
                                                                  applications in vivo. Nat Commun, 12: 4395.
            201. Contessotto P, Orbanić D, Da Costa M,  et al., 2021,   215. Zhang Z, Zhang Y, Li W,  et al., 2021, Curcumin/Fe-SiO2
               Elastin-like recombinamers-based hydrogel modulates   nano composites with multi-synergistic effects for scar
               post-ischemic remodeling in a non-transmural myocardial   inhibition and hair follicle regeneration during burn wound
               infarction in sheep. Sci Transl Med, 13: eaaz5380.
                                                                  healing. Appl Mater Today, 23: 101065.
            202. Nelson DW, Gilbert RJ, 2021, Extracellular matrix-mimetic   216. Wang Y, Ying T, Li J,  et  al., 2020, Hierarchical micro/
               hydrogels for treating neural tissue injury: A focus on fibrin,   nanofibrous scaffolds incorporated with curcumin and zinc
               hyaluronic acid, and elastin-like polypeptide hydrogels.   ion eutectic metal organic frameworks for enhanced diabetic
               Adv Healthc Mater, 10: e2101329.
                                                                  wound healing via anti-oxidant and anti-inflammatory
            203. Bai Q, Teng L, Zhang X,  et al., 2021, Multifunctional   activities. J Chem Eng, 402: 126273.
               single-component  polypeptide  hydrogels:  The  gelation   217. Liu J, Chen Z, Wang J, et al., 2018, Encapsulation of curcumin
               mechanism, superior biocompatibility, high performance   nanoparticles with mmp9-responsive  and thermos-
               hemostasis, and scarless wound healing. Adv Healthc Mater,   sensitive hydrogel improves diabetic wound healing.
               11: e2101809.
                                                                  ACS Appl Mater Interfaces, 10: 16315–16326.
            204. Bonito V, Koch SE, Krebber MM,  et al., 2021, Distinct   218. Fahimirad S, Abtahi H, Satei P,  et al., 2021, Wound
               effects of heparin and interleukin-4 functionalization   healing performance of PCL/chitosan based electrospun
               on macrophage polarization and in situ arterial tissue   nanofiber electrosprayed with curcumin loaded chitosan
               regeneration using resorbable supramolecular vascular   nanoparticles. Carbohydr Polym, 259: 117640.
               grafts in rats. Adv Healthc Mater, 10: e2101103.
                                                               219. Rao BR, Kumar R, Haque S, et al., 2021, Ag2[fe(cn)5no]-
            205. Bae S, DiBalsi MJ, Meilinger N, et al., 2018, Heparin-eluting   fabricated hydrophobic cotton as a potential wound healing
               electrospun nanofiber yarns for antithrombotic vascular   dressing: An in vivo approach. ACS Appl Mater Interfaces,
               sutures. ACS Appl Mater Interfaces, 10: 8426–8435.
                                                                  13: 10689–10704.
            206. Hettiaratchi Marian H, Krishnan L, Rouse T, et al., 2020,   220. Zhang F, Yang H, Yang Y,  et al., 2021, Stretchable and
               Heparin-mediated delivery of bone morphogenetic    biocompatible bovine serum albumin fibrous films
               protein-2 improves spatial localization of bone regeneration.   supported silver for accelerated bacteria-infected wound
               Sci Adv, 6: eaay1240.
                                                                  healing. J Chem Eng, 417: 129145.

            Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023)  380                      https://doi.org/10.18063/ijb.v9i1.648
            V
   383   384   385   386   387   388   389   390   391   392   393