Page 388 - IJB-9-1
P. 388
International Journal of Bioprinting Micro/nano-3D hemostats for rapid wound healing
194. Peers S, Montembault A, Ladaviere C, 2022, Chitosan 207. Kucharz K, Kristensen K, Johnsen KB, et al., 2021, Post-capillary
hydrogels incorporating colloids for sustained drug delivery. venules are the key locus for transcytosis-mediated brain
Carbohydr Polym, 275: 118689. delivery of therapeutic nanoparticles. Nat Commun, 12: 4121.
195. Kalantari K, Mostafavi E, Saleh B, et al., 2020, Chitosan/pva 208. Harris AR, Wallace GG, 2017, Organic electrodes and
hydrogels incorporated with green synthesized cerium oxide communications with excitable cells. Adv Funct Mater, 28:
nanoparticles for wound healing applications. Eur Polym J, 1700587.
134: 109853.
209. Wang K, Frewin CL, Esrafilzadeh D, et al., 2019, High-
196. Asghari F, Rabiei Faradonbeh D, Malekshahi ZV, et al., performance graphene-fiber-based neural recording
2021, Hybrid PCL/chitosan-PEO nanofibrous scaffolds microelectrodes. Adv Mater, 31: e1805867.
incorporated with A. euchroma extract for skin tissue 210. Maisha N, Rubenstein M, Bieberich CJ, et al., 2021, Getting
engineering application. Carbohydr Polym, 278: 118926.
to the core of it all: nanocapsules to mitigate infusion
197. Jung HY, Le Thi P, HwangBo KH, et al., 2021, Tunable reactions can promote hemostasis and be a platform for
and high tissue adhesive properties of injectable chitosan intravenous therapies. Nano Lett, 21: 9069–9076.
based hydrogels through polymer architecture modulation. 211. Yang X, Wang C, Liu Y, et al., 2021, Inherent antibacterial
Carbohydr Polym, 261: 117810.
and instant swelling ε-poly-lysine/poly(ethylene
198. Xia L, Wang S, Jiang Z, et al., 2021, Hemostatic performance glycol) diglycidyl ether superabsorbent for rapid
of chitosan-based hydrogel and its study on biodistribution hemostasis and bacterially infected wound healing. ACS
and biodegradability in rats. Carbohydr Polym, 264: Appl Mater Interfaces, 13: 36709–36721.
117965.
212. Wendels S, Averous L, 2021, Biobased polyurethanes for
199. Vakilian S, Jamshidi-Adegani F, Al Yahmadi A, et al., 2021, biomedical applications. Bioact Mater, 6: 1083–1106.
A competitive nature-derived multilayered scaffold based 213. Xiao M, Yao Y, Fan C, et al., 2021, Multiple H-bonding
on chitosan and alginate, for full-thickness wound healing. chain extender-based polyurethane: Ultrastiffness, hot-melt
Carbohydr Polym, 262: 117921.
adhesion, and 3D printing finger orthosis. J Chem Eng, 433:
200. Montazerian H, Baidya A, Haghniaz R, et al., 2021, 133260.
Stretchable and bioadhesive gelatin methacryloyl-based 214. Jiang C, Zhang L, Yang Q, et al., 2021, Self-healing polyurethane-
hydrogels enabled by in situ dopamine polymerization. ACS elastomer with mechanical tunability for multiple biomedical
Appl Mater Interfaces, 13: 40290–40301.
applications in vivo. Nat Commun, 12: 4395.
201. Contessotto P, Orbanić D, Da Costa M, et al., 2021, 215. Zhang Z, Zhang Y, Li W, et al., 2021, Curcumin/Fe-SiO2
Elastin-like recombinamers-based hydrogel modulates nano composites with multi-synergistic effects for scar
post-ischemic remodeling in a non-transmural myocardial inhibition and hair follicle regeneration during burn wound
infarction in sheep. Sci Transl Med, 13: eaaz5380.
healing. Appl Mater Today, 23: 101065.
202. Nelson DW, Gilbert RJ, 2021, Extracellular matrix-mimetic 216. Wang Y, Ying T, Li J, et al., 2020, Hierarchical micro/
hydrogels for treating neural tissue injury: A focus on fibrin, nanofibrous scaffolds incorporated with curcumin and zinc
hyaluronic acid, and elastin-like polypeptide hydrogels. ion eutectic metal organic frameworks for enhanced diabetic
Adv Healthc Mater, 10: e2101329.
wound healing via anti-oxidant and anti-inflammatory
203. Bai Q, Teng L, Zhang X, et al., 2021, Multifunctional activities. J Chem Eng, 402: 126273.
single-component polypeptide hydrogels: The gelation 217. Liu J, Chen Z, Wang J, et al., 2018, Encapsulation of curcumin
mechanism, superior biocompatibility, high performance nanoparticles with mmp9-responsive and thermos-
hemostasis, and scarless wound healing. Adv Healthc Mater, sensitive hydrogel improves diabetic wound healing.
11: e2101809.
ACS Appl Mater Interfaces, 10: 16315–16326.
204. Bonito V, Koch SE, Krebber MM, et al., 2021, Distinct 218. Fahimirad S, Abtahi H, Satei P, et al., 2021, Wound
effects of heparin and interleukin-4 functionalization healing performance of PCL/chitosan based electrospun
on macrophage polarization and in situ arterial tissue nanofiber electrosprayed with curcumin loaded chitosan
regeneration using resorbable supramolecular vascular nanoparticles. Carbohydr Polym, 259: 117640.
grafts in rats. Adv Healthc Mater, 10: e2101103.
219. Rao BR, Kumar R, Haque S, et al., 2021, Ag2[fe(cn)5no]-
205. Bae S, DiBalsi MJ, Meilinger N, et al., 2018, Heparin-eluting fabricated hydrophobic cotton as a potential wound healing
electrospun nanofiber yarns for antithrombotic vascular dressing: An in vivo approach. ACS Appl Mater Interfaces,
sutures. ACS Appl Mater Interfaces, 10: 8426–8435.
13: 10689–10704.
206. Hettiaratchi Marian H, Krishnan L, Rouse T, et al., 2020, 220. Zhang F, Yang H, Yang Y, et al., 2021, Stretchable and
Heparin-mediated delivery of bone morphogenetic biocompatible bovine serum albumin fibrous films
protein-2 improves spatial localization of bone regeneration. supported silver for accelerated bacteria-infected wound
Sci Adv, 6: eaay1240.
healing. J Chem Eng, 417: 129145.
Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023) 380 https://doi.org/10.18063/ijb.v9i1.648
V

