Page 386 - IJB-9-1
P. 386

International Journal of Bioprinting                          Micro/nano-3D hemostats for rapid wound healing



            137. Chen J, He J, Yang Y, et al., 2022, Antibacterial adhesive self-  151. Lin X, Li F, Bing Y,  et al., 2021, Biocompatible
               healing hydrogels to promote diabetic wound healing. Acta   multifunctional  e-skins  with  excellent  self-healing  ability
               Biomater, 146: 119–130.                            enabled by clean and scalable fabrication. Micro Nano Lett,
                                                                  13: 200.
            138. Yu R, Li M, Li Z,  et al., 2022, Supramolecular thermo‐
               contracting adhesive hydrogel with self‐removability   152. Kim JS, Hwang H, Lee D,  et  al., 2021, Electrospinnable,
               simultaneously enhancing noninvasive wound closure and   neutral coacervates  for  facile  preparation  of solid
               mrsa‐infected wound healing.  Adv Healthc Mater, 2022:   phenolic bioadhesives.  ACS Appl Mater Interfaces, 13:
               2102749.                                           37989–37996.
            139. Liang Y, Li M, Yang Y, et al., 2022, Ph/glucose dual responsive   153. Li J, Celiz AD, Yang J,  et  al., 2017, Tough adhesives for
               metformin release hydrogel dressings with adhesion and   diverse wet surfaces. Science, 357: 378–381.
               self-healing via dual-dynamic bonding for athletic diabetic   154. Wang Z, Wang Y, Yan J,  et al., 2021, Pharmaceutical
               foot wound healing. ACS Nano, 16: 3194–3207.
                                                                  electrospinning and 3D printing scaffold design for bone
            140. Wang Y, Wu Y, Long L, et al., 2021, Inflammation-responsive   regeneration. Adv Drug Deliv Rev, 174: 504–534.
               drug-loaded hydrogels with sequential hemostasis,   155.  Chen J, Dai S, Liu L, et al., 2021, Photo-functionalized TiO2
               antibacterial,  and  anti-inflammatory  behavior  for  nanotubes decorated with multifunctional Ag nanoparticles
               chronically infected diabetic wound treatment.  ACS Appl   for enhanced vascular biocompatibility.  Bioact Mater, 6:
               Mater Interfaces,13: 33584–33599.
                                                                  45–54.
            141. Yang L, Pijuan-Galito S, Rho HS, et al., 2021, High-throughput   156. Cheng F, Liu C, Li H, et al., 2018, Carbon nanotube-modified
               methods in the discovery and study of biomaterials and   oxidized regenerated cellulose gauzes for hemostatic
               materiobiology. Chem Rev, 121: 4561–4677.
                                                                  applications. Carbohydr Polym, 183: 246–253.
            142. Khalil AS, Jaenisch R, Mooney DJ, 2020, Engineered tissues   157. Leonhardt EE, Kang N, Hamad MA, et al., 2019, Absorbable
               and strategies to overcome challenges in drug development.   hemostatic hydrogels comprising composites of sacrificial
               Adv Drug Deliv Rev, 158: 116–139.
                                                                  templates and honeycomb-like nanofibrous mats of chitosan.
            143. Sun L, Yu Y, Chen Z, et al., 2020, Biohybrid robotics with   Nat Commun, 10: 2307.
               living cell actuation. Chem Soc Rev, 49: 4043–4069.
                                                               158. Yan J, Wang Y, Li X, et al., 2021, A bionic nano-band-aid
            144. Kim K, Ryu Ji H, Koh M-Y, et al., Coagulopathy-independent,   constructed by the three-stage self-assembly of peptides for
               bioinspired hemostatic materials: A full research story from   rapid liver hemostasis. Nano Lett, 21: 7166–7174.
               preclinical models to a human clinical trial.  Sci  Adv, 7:   159. Madruga LYC, Popat KC, Balaban RC,  et  al., 2021,
               eabc9992.
                                                                  Enhanced blood coagulation and antibacterial activities of
            145. Gonzalez-Pujana A, Vining KH, Zhang DKY, et al., 2020,   carboxymethyl-kappa-carrageenan-containing nanofibers.
               Multifunctional biomimetic hydrogel systems to boost the   Carbohydr Polym, 273: 118541.
               immunomodulatory potential of mesenchymal stromal   160. Tavakoli S, Kharaziha M, Nemati S,  et al., 2021,
               cells. Biomaterials, 257: 120266.
                                                                  Nanocomposite hydrogel based on carrageenan-coated
            146. Ceylan H, Dogan NO, Yasa IC,  et al., 2021, 3D printed   starch/cellulose nanofibers as a hemorrhage control
               personalized magnetic micromachines frompatient blood–  material. Carbohydr Polym, 251: 117013.
               derived biomaterials. Sci Adv, 7: eabh0273.
                                                               161. Mohamed E, Coupland LA, Crispin PJ, et al., 2021, Non-
            147. Geng H, Pan Yc, Zhang R, et al., 2021, Binding to amyloid‐β   oxidized cellulose nanofibers as a topical hemostat: In
               protein by photothermal blood‐brain barrier‐penetrating   vitro thromboelastometry studies of structure vs function.
               nanoparticles for inhibition and disaggregation of   Carbohydr Polym, 265: 118043.
               fibrillation. Adv Funct Mater, 31: 2102953.
                                                               162. Liu R, Dai L, Si C, et al., 2018, Antibacterial and hemostatic
            148. García‐Astrain C, Lenzi E, Jimenez de Aberasturi D,   hydrogel via nanocomposite from cellulose nanofibers.
               et al., 2020, 3D‐printed biocompatible scaffolds with   Carbohydr Polym, 195: 63–70.
               built‐in nanoplasmonic sensors.  Adv Funct  Mater, 30:    163. Cheng F, Liu C, Wei X,  et al., 2017, Preparation and
               2005407.
                                                                  characterization  of  2,2,6,6-tetramethylpiperidine-1-
            149. Zhang  D,  Chen  Q,  Shi  C,  et al.,  2020,  Dealing  with  the   oxyl (tempo)-oxidized cellulose nanocrystal/alginate
               foreign‐body response to implanted biomaterials: Strategies   biodegradable  composite  dressing  for  hemostasis
               and applications of new materials.  Adv  Funct  Mater, 31:   applications. ACS Sustain Chem Eng, 5: 3819–3828.
               2007226.
                                                               164. Lou P, Liu S, Wang Y, et al., 2021, Injectable self-assembling
            150. Balabiyev A, Podolnikova NP, Kilbourne JA,  et al., 2021,   peptide nanofiber hydrogel as a bioactive 3D platform to
               Fibrin polymer on the surface of biomaterial implants drives   promote chronic wound tissue regeneration. Acta Biomater,
               the foreign body reaction. Biomaterials, 277: 121087.  135: 100–112.



            V
            Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023)  378                      https://doi.org/10.18063/ijb.v9i1.648
   381   382   383   384   385   386   387   388   389   390   391