Page 387 - IJB-9-1
P. 387

International Journal of Bioprinting                          Micro/nano-3D hemostats for rapid wound healing



            165. Adeli-Sardou M, Yaghoobi MM, Torkzadeh-Mahani M, et al.,   179. Ashammakhi N, Hernandez AL, Unluturk BD, et al., 2021,
               2019, Controlled release of lawsone from polycaprolactone/  Biodegradable implantable sensors: Materials  design,
               gelatin electrospun nano fibers for skin tissue regeneration.   fabrication, and applications. Adv Funct Mater, 31: 2104149.
               Int J Biol Macromol, 124: 478–491.
                                                               180. Bal-Ozturk A, Cecen B, Avci-Adali M, et al., 2021, Tissue
            166. Liu  S,  Wang  Y,  Ming  X,  et al.,  2021,  High-speed  blow   adhesives: From research to clinical translation. Nano Today,
               spinning of neat graphene fibrous materials. Nano Lett, 21:   36: 101049.
               5116–5125.
                                                               181. Ma C, Sun J, Li B, et al., 2021, Ultra-strong bio-glue from
            167. McCarthy A, Saldana L, McGoldrick D, et al., 2021, Large-  genetically engineered polypeptides. Nat Commun, 12: 3613.
               scale synthesis of compressible and re-expandable three-  182. Li Y, Huang X, Xu Y, et al., 2022, A bio-inspired multifunctional
               dimensional nanofiber matrices. Nano Select, 2: 1566–1579.
                                                                  soy protein-based material: From strong underwater adhesion
            168. Jiang Q, Luo B, Wu Z,  et al., 2021, Corn stalk/AgNPs   to 3D printing. J Chem Eng, 430: 133017.
               modified chitin composite hemostatic sponge with high   183. He J, Zhang Z, Yang Y, et al., 2021, Injectable self-healing
               absorbency,  rapid  shape  recovery  and  promoting wound   adhesive ph-responsive hydrogels accelerate gastric
               healing ability. J Chem Eng, 421: 129815.
                                                                  hemostasis and wound healing. Micro Nano Lett, 13: 80.
            169. Clasky AJ, Watchorn JD, Chen PZ,  et al., 2021, From   184. Poventud-Fuentes I, Kwon KW, Seo J, et al., 2021, A human
               prevention to diagnosis and treatment: Biomedical   vascular injury-on-a-chip model of hemostasis. Small, 17:
               applications of metal nanoparticle-hydrogel composites.   e2004889.
               Acta Biomater, 122: 1–25.
                                                               185. Kim  KY,  Ryu  JH,  Koh MY,  et al.,  2021,  Coagulopathy-
            170. Zadeh Mehrizi T, Eshghi P, 2021, Investigation of the effect   independent, bioinspired hemostatic materials A full
               of nanoparticles on platelet storage duration 2010–2020.   research story from preclinical models to a human clinical
               Int Nano Lett, 12:15–45.
                                                                  trial. Sci Adv, 7: eabc9992
            171. Kottana RK, Maurizi L, Schnoor B, et al., 2021, Anti-platelet   186. Teng L, Shao Z, Bai Q,  et al., 2021, Biomimetic
               effect induced by iron oxide nanoparticles: Correlation   glycopolypeptide hydrogels with tunable adhesion and
               with conformational change in fibrinogen.  Small, 17:   microporous  structure  for  fast  hemostasis  and  highly
               e2004945.
                                                                  efficient wound healing. Adv Funct Mater, 31: 2105628.
            172. Zhao Y, Liu R, Fan Y, et al., 2021, Self-sealing hemostatic   187. Faizullin  DA,  Valiullina  YA,  Salnikov  VV,  et al.,  2021,
               and antibacterial needles by polyphenol-assisted surface   Fibrinogen adsorption on the  lipid surface  as a  factor of
               self-assembly of multifunctional nanoparticles. J Chem Eng,   regulation of fibrin formation. Biophysics, 66: 70–76.
               425: 130621.
                                                               188. Zhou L, Zheng H, Liu Z, et al., 2021, Conductive antibacterial
            173. Tao  B, Lin  C,  Yuan Z,  et al.,  2021, Near  infrared light-  hemostatic multifunctional scaffolds based on ti3c2tx mxene
               triggered on-demand Cur release from Gel-PDA@Cur   nanosheets for promoting multidrug-resistant bacteria-
               composite hydrogel for antibacterial wound healing. J Chem   infected wound healing. ACS Nano, 15: 2468–2480.
               Eng, 403: 126182.
                                                               189. Li Z, Zhao Y, Ouyang X,  et al., 2022, Biomimetic hybrid
            174. Yang Z, Fu X, Zhou L, et al., 2021, Chem-inspired synthesis   hydrogel for hemostasis, adhesion prevention and promoting
               of injectable metal–organic hydrogels for programmable   regeneration after partial liver resection. Bioact Mater, 11:
               drug carriers, hemostasis and synergistic cancer treatment.   41–51.
               J Chem Eng, 423: 130202.
                                                               190. Liang Y, Li M, Huang Y, et al., 2021, An integrated strategy for
            175. Albadawi H, Altun I, Hu J,  et al., 2020, Nanocomposite   rapid hemostasis during tumor resection and prevention of
               hydrogel with tantalum microparticles for rapid    postoperative tumor recurrence of hepatocellular carcinoma
               endovascular hemostasis. Adv Sci, 8: 2003327.
                                                                  by antibacterial shape memory cryogel. Small, 17: e2101356.
            176. da Silva D, Kaduri M, Poley M, et al., 2018, Biocompatibility,   191. Mahmoodzadeh A, Moghaddas J, Jarolmasjed S, et al., 2021,
               biodegradation and excretion of polylactic acid (PLA) in   Biodegradable cellulose-based superabsorbent as potent
               medical implants and theranostic systems. J Chem Eng, 340:   hemostatic agent. J Chem Eng, 418:129252.
               9–14.
                                                               192. Wang Y, Zhao Y, Qiao L,  et al., 2021, Cellulose fibers-
            177. Song  C,  Zhang  X,  Wang  L,  et al.,  2019,  An injectable   reinforced self-expanding porous composite with multiple
               conductive  three-dimensional  elastic  network  by  tangled   hemostatic efficacy and shape adaptability for uncontrollable
               surgical-suture spring for heart repair.  ACS Nano, 13:   massive hemorrhage treatment. Bioact Mater, 6: 2089–2104.
               14122–14137.
                                                               193. Lu S, Zhang X, Tang Z, et al., 2021, Mussel-inspired blue-
            178. Chiong JA, Tran H, Lin Y, et al., 2021, Integrating emerging   light-activated cellulose-based adhesive hydrogel with fast
               polymer chemistries for the advancement of recyclable,   gelation, rapid haemostasis and antibacterial property for
               biodegradable, and biocompatible electronics.  Adv Sci, 8:   wound healing. J Chem Eng, 417: 129329.
               e2101233.

            V
            Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023)  379                      https://doi.org/10.18063/ijb.v9i1.648
   382   383   384   385   386   387   388   389   390   391   392