Page 225 - IJB-9-2
P. 225

International Journal of Bioprinting                       Three-dimensional bioprinting in toxicological research


               drug-induced injury in drug development.  Int J  Toxicol,   129. Min D, Lee W, Bae IH, et al., 2018, Bioprinting of biomimetic
               38: 215–227.                                       skin containing melanocytes. Exp Dermatol, 27: 453–459.
               https://doi.org/10.1177/1091581819831701           https://doi.org/10.1111/exd.13376
            118. Pregosin NC, Bronstein R, Mallipattu SK, 2021, Recent   130. Ng WL, Qi JT, Yeong WY, et al., 2018, Proof-of-concept:
               advances in kidney bioengineering. Front Pediatr, 9: 743301.   3D  bioprinting  of pigmented  human skin constructs.
               https://doi.org/10.3389/fped.2021.743301           Biofabrication, 10: 025005.
            119. Homan KA, Kolesky DB, Skylar-Scott MA, et al., 2016,      https://doi.org/10.1088/1758-5090/aa9e1e
               Bioprinting of 3D convoluted renal proximal  tubules on   131. Hong S, Song JM, 2021, A 3D cell printing-fabricated HepG2
               perfusable chips. Sci Rep, 6: 34845.               liver spheroid model for high-content in situ quantification
                                                                  of drug-induced liver toxicity. Biomater Sci, 9: 5939–5950.
               https://doi.org/10.1038/srep34845
            120. Lin NY, Homan KA, Robinson SS, et  al., 2019, Renal      https://doi.org/10.1039/d1bm00749a
               reabsorption in 3D vascularized proximal tubule models.   132. Kizawa H, Nagao E, Shimamura M, et al., 2017, Scaffold-
               Proc Natl Acad Sci U S A, 116: 5399–5404.          free 3D bio-printed human liver tissue stably maintains
               https://doi.org/10.1073/pnas.1815208116            metabolic functions useful for drug discovery.  Biochem
                                                                  Biophys Rep, 10: 186–191.
            121. Lawlor  KT,  Vanslambrouck  JM,  Higgins  JW, et al.,  2021,
               Cellular  extrusion  bioprinting  improves  kidney  organoid      https://doi.org/10.1016/j.bbrep.2017.04.004
               reproducibility and conformation. Nat Mater, 20: 260–271.   133. Ma X, Qu X, Zhu W, et al., 2016, Deterministically patterned
               https://doi.org/10.1038/s41563-020-00853-9         biomimetic human  iPSC-derived hepatic model  via rapid
                                                                  3D bioprinting. Proc Natl Acad Sci U S A, 113: 2206–2211.
            122. King SM, Higgins JW, Nino CR, et al., 2017, 3D proximal
               tubule tissues recapitulate key aspects of renal physiology to      https://doi.org/10.1073/pnas.1524510113
               enable nephrotoxicity testing. Front Physiol, 8: 123.   134. Faulkner-Jones A, Fyfe C, Cornelissen DJ, et al., 2015,
               https://doi.org/10.3389/fphys.2017.00123           Bioprinting of human pluripotent stem cells and their
                                                                  directed differentiation into hepatocyte-like  cells for  the
            123. Gao C, Lu C, Jian Z, et al., 2021, 3D bioprinting for   generation of mini-livers in 3D. Biofabrication, 7: 044102.
               fabricating artificial skin tissue. Colloids Surf B Biointerfaces,
               208: 112041.                                       https://doi.org/10.1088/1758-5090/7/4/044102
               https://doi.org/10.1016/j.colsurfb.2021.112041  135. Lei  M,  Wang X,  2016,  Biodegradable polymers  and stem
                                                                  cells for bioprinting. Molecules, 21: 539.
            124. Weng T, Zhang W, Xia Y, et al., 2021, 3D bioprinting for skin
               tissue engineering: Current status and perspectives. J Tissue      https://doi.org/10.3390/molecules21050539
               Eng, 12: 20417314211028574.                     136. Poyck PP, Pless G, Hoekstra R,  et  al., 2007,  In  vitro
               https://doi.org/10.1177/20417314211028574          comparison of two bioartificial liver support systems: MELS
                                                                  CellModule and AMC-BAL. Int J Artif Organs, 30: 183–191.
            125. Manita PG, Garcia-Orue I, Santos-Vizcaino E, et al.,
               2021, 3D Bioprinting of functional skin substitutes: From      https://doi.org/10.1177/039139880703000302
               current  achievements  to  future  goals.  Pharmaceuticals   137. Calise F, Mancini A, Amoroso P, et al., 2001, Functional
               (Basel), 14: 362.                                  evaluation of the AMC-BAL to be employed in a
               https://doi.org/10.3390/ph14040362                 multicentric clinical trial for acute liver failure. Transplant
                                                                  Proc, 33: 647–649.
            126. Ng WL, Wang S, Yeong WY, et al., 2016, Skin bioprinting:
               Impending reality or fantasy? Trends Biotechnol, 34: 689–699.      https://doi.org/10.1016/s0041-1345(00)02183-7
               https://doi.org/10.1016/j.tibtech.2016.04.006   138. Nibourg GA, Hoekstra R, van der Hoeven TV, et al., 2013,
                                                                  Effects  of  acute-liver-failure-plasma  exposure  on  hepatic
            127. Tarassoli SP, Jessop ZM, Al-Sabah A, et al., 2018, Skin tissue   functionality of HepaRG-AMC-bioartificial liver. Liver Int,
               engineering using 3D bioprinting: An evolving research   33: 516–524.
               field. J Plast Reconstr Aesthet Surg, 71: 615–623.
                                                                  https://doi.org/10.1111/liv.12090
               https://doi.org/10.1016/j.bjps.2017.12.006
                                                               139. van de Kerkhove MP, Poyck PP, van Wijk AC, et al., 2005,
            128. Abaci HE, Guo Z, Coffman A, et al., 2016, Human skin   Assessment and improvement of liver specific function of
               constructs  with  spatially  controlled  vasculature  using
               primary and iPSC-derived endothelial cells.  Adv Healthc   the AMC-bioartificial liver. Int J Artif Organs, 28: 617–630.
               Mater, 5: 1800–1807.                               https://doi.org/10.1177/039139880502800611
               https://doi.org/10.1002/adhm.201500936          140. van de Kerkhove MP, Poyck PP, Deurholt T, et al., 2005,


            Volume 9 Issue 2 (2023)                        217                      https://doi.org/10.18063/ijb.v9i2.663
   220   221   222   223   224   225   226   227   228   229   230