Page 221 - IJB-9-2
P. 221

International Journal of Bioprinting                       Three-dimensional bioprinting in toxicological research


               https://doi.org/10.1016/j.jconrel.2014.06.044   36.  Nguyen DG, Funk J, Robbins JB, et al., 2016, Bioprinted
                                                                  3D primary liver tissues allow assessment of organ-level
            24.  Madden LR, Nguyen TV, Garcia-Mojica S,  et al., 2018,   response to clinical drug induced toxicity in vitro. PLoS One,
               Bioprinted 3D primary human intestinal tissues model
               aspects of native physiology and ADME/Tox functions.   11: e0158674.
               iScience, 2: 156–167.                              https://doi.org/10.1371/journal.pone.0158674
               https://doi.org/10.1016/j.isci.2018.03.015      37.  Bell CC, Hendriks DF, Moro SM, et al., 2016, Characterization
                                                                  of primary human hepatocyte spheroids as a model system
            25.  Faber KN, Muller M, Jansen PL, 2003, Drug transport
               proteins in the liver. Adv Drug Deliv Rev, 55: 107–124.   for drug-induced liver injury, liver function and disease. Sci
                                                                  Rep, 6: 25187.
               https://doi.org/10.1016/s0169-409x(02)00173-4
                                                                  https://doi.org/10.1038/srep25187
            26.  Sawant-Basak A, Obach RS, 2018, Emerging models of drug   38.  Kanebratt KP, Janefeldt A, Vilen L, et al., 2021, Primary
               metabolism, transporters, and toxicity. Drug Metab Dispos,
               46: 1556–1561.                                     human hepatocyte spheroid model as a 3D in vitro platform
                                                                  for metabolism studies. J Pharm Sci, 110: 422–431.
               https://doi.org/10.1124/dmd.118.084293
                                                                  https://doi.org/10.1016/j.xphs.2020.10.043
            27.  Jetter A, Kullak-Ublick GA, 2020, Drugs and hepatic   39.  Li  F,  Cao  L,  Parikh S, et al.,  2020,  Three-dimensional
               transporters: A review. Pharmacol Res, 154: 104234.
                                                                  spheroids with primary human liver cells and differential
               https://doi.org/10.1016/j.phrs.2019.04.018         roles of kupffer cells in drug-induced liver injury. J Pharm
                                                                  Sci, 109: 1912–1923.
            28.  Gholam PM, 2020, A focus on drug-induced liver injury.
               Clin Liver Dis, 24: xiii–xiv.                      https://doi.org/10.1016/j.xphs.2020.02.021
               https://doi.org/10.1016/j.cld.2019.10.001       40.  Ware BR, Liu JS, Monckton CP, et al., 2021, Micropatterned
            29.  Beckwitt CH, Clark AM, Wheeler S, et al., 2018, Liver “organ   coculture with 3T3-J2 fibroblasts enhances hepatic
               on a chip”. Exp Cell Res, 363: 15–25.              functions and drug screening utility of heparg cells. Toxicol
                                                                  Sci, 181: 90–104.
               https://doi.org/10.1016/j.yexcr.2017.12.023
                                                                  https://doi.org/10.1093/toxsci/kfab018
            30.  Shimoda H, Yagi H, Higashi H, et al., 2019, Decellularized
               liver  scaffolds  promote liver regeneration  after partial   41.  Trask OJ Jr., Moore A, LeCluyse EL, 2014, A micropatterned
               hepatectomy. Sci Rep, 9: 12543.                    hepatocyte coculture model for assessment of liver toxicity
                                                                  using high-content imaging analysis.  Assay Drug Dev
               https://doi.org/10.1038/s41598-019-48948-x         Technol, 12: 16–27.
            31.  Chen Y, Geerts S, Jaramillo M, et al., 2018, Preparation of      https://doi.org/10.1089/adt.2013.525
               decellularized liver scaffolds and recellularized liver grafts.
               Methods Mol Biol, 1577: 255–270.                42.  Liu Y, Li H, Yan S, et al., 2014, Hepatocyte cocultures with
                                                                  endothelial cells and fibroblasts on micropatterned fibrous
               https://doi.org/10.1007/7651_2017_56               mats to promote liver-specific functions and capillary
            32.  Vatakuti S, Olinga P, Pennings JL, et al., 2017, Validation of   formation capabilities. Biomacromolecules, 15: 1044–1054.
               precision-cut liver slices to study drug-induced cholestasis:      https://doi.org/10.1021/bm401926k
               A transcriptomics approach. Arch Toxicol, 91: 1401–1412.
                                                               43.  Khetani SR, Kanchagar C, Ukairo O, et al., 2013, Use of
               https://doi.org/10.1007/s00204-016-1778-8          micropatterned cocultures to detect compounds that cause
            33.  Othman A, Ehnert S, Dropmann A, et al., 2020, Precision-  drug-induced liver injury in humans. Toxicol Sci, 132: 107–117.
               cut liver slices as an alternative method for long-term      https://doi.org/10.1093/toxsci/kfs326
               hepatotoxicity studies. Arch Toxicol, 94: 2889–2891.
                                                               44.  Choi YJ, Kim H, Kim JW, et al., 2018, Hepatic esterase
               https://doi.org/10.1007/s00204-020-02861-9         activity is increased in hepatocyte-like cells derived from
                                                                  human embryonic stem cells using a 3D culture system.
            34.  Steimberg N, Bertero A, Chiono V, et al., 2020, iPS,
               organoids and 3D  models as advanced tools for  in vitro   Biotechnol Lett, 40: 755–763.
               toxicology. ALTEX, 37: 136–140.                    https://doi.org/10.1007/s10529-018-2528-1
               https://doi.org/10.14573/altex.1911071          45.  Sharma VR, Shrivastava A, Gallet B, et al., 2019, Canalicular
            35.  Torok G, Erdei Z, Lilienberg J, et al., 2020, The importance of   domain structure and function in matrix-free hepatic
               transporters and cell polarization for the evaluation of human   spheroids. Biomater Sci, 8: 485–496.
               stem cell-derived hepatic cells. PLoS One, 15: e0227751.      https://doi.org/10.1039/c9bm01143a
               https://doi.org/10.1371/journal.pone.0227751    46.  Elje E, Mariussen E, Moriones OH, et al., 2020, Hepato(Geno)


            Volume 9 Issue 2 (2023)                        213                      https://doi.org/10.18063/ijb.v9i2.663
   216   217   218   219   220   221   222   223   224   225   226