Page 223 - IJB-9-2
P. 223

International Journal of Bioprinting                       Three-dimensional bioprinting in toxicological research


               organoids. J Hepatol, 71: 970–985.                 3D bioprinting: Novel approaches for engineering complex
                                                                  human tissue equivalents and drug testing. Essays Biochem,
               https://doi.org/10.1016/j.jhep.2019.06.030
                                                                  65: 417–427.
            70.  Augustyniak J, Bertero A, Coccini T, et al., 2019, Organoids
               are promising tools for species-specific in vitro toxicological      https://doi.org/10.1042/EBC20200153
               studies. J Appl Toxicol, 39: 1610–1622.         82.  Nguyen DG, Pentoney SL Jr., 2017, Bioprinted three
                                                                  dimensional human tissues for toxicology and disease
               https://doi.org/10.1002/jat.3815
                                                                  modeling. Drug Discov Today Technol, 23: 37–44.
            71.  Akbari S, Arslan N, Senturk S, et al., 2019, Next-generation
               liver medicine using organoid models.  Front  Cell Dev      https://doi.org/10.1016/j.ddtec.2017.03.001
               Biol, 7: 345.                                   83.  Kryou C, Leva V, Chatzipetrou M, et al., 2019, Bioprinting
                                                                  for liver transplantation. Bioengineering (Basel), 6: 95.
               https://doi.org/10.3389/fcell.2019.00345
                                                                  https://doi.org/10.3390/bioengineering6040095
            72.  Nuciforo S, Fofana I, Matter MS, et al., 2018, Organoid
               models of human liver cancers derived from tumor needle   84.  Tasoglu S, Demirci U, 2013, Bioprinting for stem cell
               biopsies. Cell Rep, 24: 1363–1376.                 research. Trends Biotechnol, 31: 10–19.
               https://doi.org/10.1016/j.celrep.2018.07.001       https://doi.org/10.1016/j.tibtech.2012.10.005
            73.  Hu H, Gehart H, Artegiani B, et al., 2018, Long-term   85.  Agarwal T, Banerjee D, Konwarh R,  et  al., 2021, Recent
               expansion of functional mouse and human hepatocytes as   advances in bioprinting technologies for engineering
               3D organoids. Cell, 175: 1591–1606 e1519.          hepatic tissue. Mater Sci Eng C Mater Biol Appl, 123: 112013.
               https://doi.org/10.1016/j.cell.2018.11.013         https://doi.org/10.1016/j.msec.2021.112013
            74.  Artegiani B, Clevers H, 2018, Use and application of   86.  Vurat MT, Ergun C, Elcin AE, et al., 2020, 3D bioprinting of
               3D-organoid technology. Hum Mol Genet, 27: R99–R107.   tissue models with customized bioinks. Adv Exp Med Biol,
                                                                  1249: 67–84.
               https://doi.org/10.1093/hmg/ddy187
                                                                  https://doi.org/10.1007/978-981-15-3258-0_5
            75.  Schneeberger K, Spee B, Costa P, et al., 2017, Converging
               biofabrication and organoid technologies: the next frontier   87.  Tandon R, Froghi S, 2020, Artificial liver support systems.
               in hepatic and intestinal tissue engineering? Biofabrication,   J Gastroenterol Hepatol, 36: 1164–1179.
               9: 013001.
                                                                  https://doi.org/10.1111/jgh.15255
               https://doi.org/10.1088/1758-5090/aa6121
                                                               88.  Matai  I,  Kaur  G,  Seyedsalehi  A, et al.,  2020,  Progress  in
            76.  Dutta D, Heo I, Clevers H, 2017, Disease modeling in stem cell-  3D bioprinting technology for tissue/organ regenerative
               derived 3D organoid systems. Trends Mol Med, 23: 393–410.   engineering. Biomaterials, 226: 119536.
               https://doi.org/10.1016/j.molmed.2017.02.007       https://doi.org/10.1016/j.biomaterials.2019.119536
            77.  Leite SB, Roosens T, El Taghdouini A, et al., 2016, Novel   89.  Ma L, Wu Y, Li Y, et al., 2020, Current advances on 3D-bioprinted
               human hepatic organoid model enables testing of drug-  liver tissue models. Adv Healthc Mater, 9: e2001517.
               induced liver fibrosis in vitro. Biomaterials, 78: 1–10.
                                                                  https://doi.org/10.1002/adhm.202001517
               https://doi.org/10.1016/j.biomaterials.2015.11.026
                                                               90.  Wang X, 2019, Advanced polymers for three-dimensional
            78.  Gilazieva Z, Ponomarev A, Rutland C, et  al., 2020,   (3D) organ bioprinting. Micromachines (Basel), 10: 814.
               Promising applications of tumor spheroids and organoids      https://doi.org/10.3390/mi10120814
               for personalized medicine. Cancers (Basel), 12: 2727.
                                                               91.  He YT, Qi YN, Zhang BQ, et al., 2019, Bioartificial liver
               https://doi.org/10.3390/cancers12102727
                                                                  support systems for acute liver failure: A systematic review
            79.  Chen EP, Toksoy Z, Davis BA, et al., 2021, 3D Bioprinting   and meta-analysis of the clinical and preclinical literature.
               of vascularized tissues for in vitro and in vivo applications.   World J Gastroenterol, 25: 3634–3648.
               Front Bioeng Biotechnol, 9: 664188.
                                                                  https://doi.org/10.3748/wjg.v25.i27.3634
               https://doi.org/10.3389/fbioe.2021.664188
                                                               92.  Chamuleau RA, 2009, Future of bioartificial liver support.
            80.  Lee  JM,  Sing  SL,  Zhou  M, et al.,  2018,  3D  bioprinting   World J Gastrointest Surg, 1: 21–25.
               processes: A perspective on classification and terminology.      https://doi.org/10.4240/wjgs.v1.i1.21
               Int J Bioprint, 4: 151.
                                                               93.  Lelievre SA, Kwok T, Chittiboyina S, 2017, Architecture in
               https://doi.org/10.18063/IJB.v4i2.151
                                                                  3D cell culture: An essential feature for in vitro toxicology.
            81.  Hagenbuchner J, Nothdurfter D, Ausserlechner MJ, 2021,   Toxicol In Vitro, 45: 287–295.


            Volume 9 Issue 2 (2023)                        215                      https://doi.org/10.18063/ijb.v9i2.663
   218   219   220   221   222   223   224   225   226   227   228