Page 282 - IJB-9-2
P. 282

International Journal of Bioprinting                                     Bioprinting of β-islet-like constructs



               https://doi:10.1016/j.precisioneng.2017.05.015     https://doi:10.1088/1758-5090/7/4/045009
            68.   Cui H, Nowicki M, Fisher JP, et al., 2017, 3D bioprinting for   80.   Yu S-L, Lee S-K, 2017, Ultraviolet radiation: DNA damage,
               organ regeneration. Adv Healthc Mater, 6:e1601118.  repair, and human disorders. Mol Cell Toxicol, 13: 21–28.
               https://doi:10.1002/adhm.201601118                 https://doi:10.1007/s13273-017-0002-0
            69.   Ng WL, Huang X, Shkolnikov V, et al., 2022, Controlling   81.   Jiang T, Munguia-Lopez JG, Flores-Torres S,  et  al., 2019,
               droplet impact velocity and droplet volume: key factors to   Extrusion bioprinting of soft materials: An emerging
               achieving high cell viability in sub-nanoliter droplet-based   technique for biological model fabrication. Appl Phys Rev, 6:
               bioprinting. Int J Bioprint, 8: 424.               011310.
               https://doi:10.18063/ijb.v8i1.424                  https://doi:10.1063/1.5059393
            70.   Xu C, Zhang M, Huang Y,  et  al., 2014, Study of droplet   82.   Billiet T, Gevaert E, De Schryver T,  et  al., 2014, The 3D
               formation process during drop-on-demand inkjetting of   printing of gelatin methacrylamide cell-laden tissue-
               living cell-laden bioink. Langmuir, 30: 9130–9138.  engineered constructs with high cell viability. Biomaterials,
                                                                  35: 49–62.
               https://doi:10.1021/la501430x
                                                                  https://doi:10.1016/j.biomaterials.2013.09.078
            71.   Xu T, Jin J, Gregory C, et al., 2005, Inkjet printing of viable
               mammalian cells. Biomaterials, 26: 93–99.       83.   Ahn S, Lee H, Kim G, 2013, Functional cell-laden
                                                                  alginate scaffolds consisting of core/shell struts for tissue
               https://doi:10.1016/j.biomaterials.2004.04.011     regeneration. Carbohydr Polym, 98: 936–942.
            72.   Demirci U, Montesano G, 2007, Single cell epitaxy by   https://doi:10.1016/j.carbpol.2013.07.008
               acoustic picolitre droplets. Lab Chip, 7: 1139–1145.
                                                               84.   Zhuang P, Ng WL, An J,  et  al., 2019, Layer-by-layer
               https://doi:10.1039/b704965j                       ultraviolet assisted extrusion-based (UAE) bioprinting of
            73.   Guillemot F, Guillotin B, Fontaine A,  et  al., 2011, Laser-  hydrogel constructs with high aspect ratio for soft tissue
               assisted bioprinting to deal with tissue complexity in   engineering applications. PLoS One, 14: e0216776.
               regenerative medicine. MRS Bull, 36: 1015–1019.    https://doi:10.1371/journal.pone.0216776
               https://doi:10.1557/mrs.2011.272
                                                               85.   Chia HN, Wu BM, 2015, Recent advances in 3D printing of
            74.   Hakobyan D, Médina C, Dusserre N,  et  al., 2020, Laser-  biomaterials. J Biol Eng, 9: 4.
               assisted 3D bioprinting of exocrine pancreas spheroid models   https://doi:10.1186/s13036-015-0001-4
               for cancer initiation study. Biofabrication, 12: 035001.
                                                               86.   Hospodiuk M, Dey M, Sosnoski D, et al., 2017, The bioink: A
               https://doi:10.1088/1758-5090/ab7cb8
                                                                  comprehensive review on bioprintable materials. Biotechnol
            75.   Turksen, K. (eds), 2015, 3D Bioprinting and 3D imaging   Adv, 35: 217–239.
               for stem cell engineering, in  Bioprinting in Regenerative   https://doi:10.1016/j.biotechadv.2016.12.006
               Medicine: Stem Cell Biology and Regenerative Medicine,
               Springer International Publishing, Cham, 33–66.  87.   Chan BP, Leong KW, 2008, Scaffolding in tissue engineering:
               https://doi:10.1007/978-3-319-21386-6_2            general approaches and tissue-specific considerations. Eur
                                                                  Spine J, 467–479.
            76.   Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization-
               based bioprinting-process, materials, applications and   https://doi:10.1007/s00586-008-0745-3
               regulatory challenges. Biofabrication, 12: 022001.  88.   Asghari F, Samiei M, Adibkia K, et al., 2017, Biodegradable
               https://doi:10.1088/1758-5090/ab6034               and biocompatible polymers for tissue engineering
                                                                  application: a review.  Artif  Cells Nanomed  Biotechnol, 45:
            77.   Li W, Mille LS, Robledo JA, et al., 2020, Recent advances   185–192.
               in formulating and processing biomaterial inks for vat
               polymerization-based 3D printing.  Adv Healthc Mater, 9:   https://doi:10.3109/21691401.2016.1146731
               e2000156.                                       89.   Liang J-P, Accolla RP, Soundirarajan M,  et  al., 2021,
               https://doi:10.1002/adhm.202000156                 Engineering a macroporous oxygen-generating scaffold for
                                                                  enhancing islet cell transplantation within an extrahepatic
            78.   Hull CW, 1986, Apparatus for production of three-dimensional   site. Acta Biomater, 130: 268–280.
               objects by stereolithography. US Patent. 4575330.
                                                                  https://doi:10.1016/j.actbio.2021.05.028
               https://patentimages.storage.googleapis.com/5c/a0/27/
               e49642dab99cf6/US4575330.pdf                    90.   Pedraza E, Coronel MM, Fraker CA, et al., 2012, Preventing
                                                                  hypoxia-induced cell death in beta cells and islets via
            79.   Wang Z, Abdulla R, Parker B, et al., 2015, A simple and high-  hydrolytically activated, oxygen-generating biomaterials.
               resolution stereolithography-based 3D bioprinting system using   Proc Natl Acad Sci U S A, 109: 4245–4250.
               visible light crosslinkable bioinks. Biofabrication, 7: 045009.

            Volume 9 Issue 2 (2023)                        274                     http://doi.org/10.18063/ijb.v9i2.665
   277   278   279   280   281   282   283   284   285   286   287