Page 287 - IJB-9-2
P. 287
International Journal of Bioprinting Bioprinting of β-islet-like constructs
https://doi:10.1089/tea.2007.0099 183. Kim J, Kang K, Drogemuller CJ, 2019, Bioprinting an
artificial pancreas for type 1 diabetes. Curr Diab Rep, 19: 53.
179. Ma M, Chiu A, Sahay G, et al., 2013, Cell delivery: Core-shell
hydrogel microcapsules for improved islets encapsulation. https://doi:10.1007/s11892-019-1166-x
Adv Healthc Mater, 2: 768–768.
184. Tuch BE, Keogh GW, Williams LJ, et al., 2009, Safety and
https://doi:10.1002/adhm.201370026 viability of microencapsulated human islets transplanted
into diabetic humans. Diabetes Care, 32: 1887–1889.
180. Ludwig B, Reichel A, Steffen A, et al., 2013, Transplantation
of human islets without immunosuppression. Proc Natl https://doi:10.2337/dc09-0744
Acad Sci U S A, 110: 19054–19058. 185. Ng WL, Chan A, Ong YS, et al., 2020, Deep learning for
https://doi:10.1073/pnas.1317561110 fabrication and maturation of 3D bioprinted tissues and
organs. Virtual Phys Prototyp, 15: 340–358.
181. Carlsson P-O, Espes D, Sedigh A, et al., 2018, Transplantation
of macroencapsulated human islets within the bioartificial https://doi:10.1080/17452759.2020.1771741
pancreas βAir to patients with type 1 diabetes mellitus. Am J 186. Yu C, Jiang J. 2020, A perspective on using machine learning
Transplant, 18: 1735–1744. in 3D bioprinting. Int J Bioprint, 6: 253.
https://doi:10.1111/ajt.14642 https://doi:10.18063/ijb.v6i1.253
182. Bernard AB, Lin C-C, Anseth KS, 2012, A microwell cell 187. Fu Z, Angeline V, Sun W, 2021, Evaluation of printing
culture platform for the aggregation of pancreatic β-cells. parameters on 3D extrusion printing of pluronic hydrogels
Tissue Eng. Part C Methods, 18: 583–592. and machine learning guided parameter recommendation.
https://doi:10.1089/ten.tec.2011.0504 Int J Bioprint, 7: 434.
https://doi:10.18063/ijb.v7i4.434
Volume 9 Issue 2 (2023) 279 http://doi.org/10.18063/ijb.v9i2.665

