Page 285 - IJB-9-2
P. 285

International Journal of Bioprinting                                    Bioprinting of β-islet-like constructs



               https://doi:10.1098/rstb.2017.0230                 https://doi:10.1088/1758-5090/9/1/015002
            136.  Greggio C, De Franceschi F, Figueiredo-Larsen M,  et  al.,   147.  Daoud JT, Petropavlovskaia MS, Patapas JM,  et  al., 2011,
               2013,  Artificial three-dimensional  niches  deconstruct   Long-term  in  vitro  human  pancreatic  islet  culture  using
               pancreas development in vitro.  Development, 140:    three-dimensional microfabricated scaffolds.  Biomaterials,
               4452–4462.                                         32: 1536–1542.
               https://doi:10.1242/dev.096628                     https://doi:10.1016/j.biomaterials.2010.10.036
            137.  Haque MR, Lee DY, Ahn C-H,  et  al., 2014, Local co-  148.  Salg GA, Poisel E, Neulinger-Munoz M, et al., 2022, Toward
               delivery of pancreatic islets and liposomal clodronate using   3D-bioprinting of an endocrine pancreas: A building-block
               injectable hydrogel to prevent acute immune reactions in a   concept for bioartificial insulin-secreting tissue. J Tissue Eng,
               type 1 diabetes. Pharm Res, 31: 2453–2462.         13: 204173142210910.
               https://doi:10.1007/s11095-014-1340-4              https://doi:10.1177/20417314221091033
                                                               149.  Athanasiou KA, Eswaramoorthy R, Hadidi P, et al., 2013,
            138.  Pati F, Gantelius J, Svahn HA, 2016, 3D bioprinting of tissue/
               organ models. Angew Chem Int Ed Engl, 55: 4650–4665.  Self-organization and the self-assembling process in tissue
                                                                  engineering. Annu Rev Biomed Eng, 15: 115–136.
               https://doi:10.1002/anie.201505062
                                                                  https://doi:10.1146/annurev-bioeng-071812-152423
            139.  Gentile P, Chiono V, Carmagnola I, et al., 2014, An overview   150.  Ovsianikov A, Khademhosseini A, Mironov V, 2018,
               of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials   The Synergy of Scaffold-Based and Scaffold-Free Tissue
               for bone tissue engineering. Int J Mol Sci, 15: 3640–3659.
                                                                  Engineering Strategies. Trends Biotechnol, 36: 348–357.
               https://doi:10.3390/ijms15033640
                                                                  https://doi:10.1016/j.tibtech.2018.01.005
            140.  Shim J-H, Kim JY, Park M,  et  al., 2011, Development of a
               hybrid scaffold with synthetic biomaterials and hydrogel using   151.  Yu Y, Moncal KK, Li J,  et  al., 2016, Three-dimensional
               solid freeform fabrication technology. Biofabrication, 3: 034102.  bioprinting using self-assembling scalable scaffold-free
                                                                  “tissue strands” as a new bioink. 6: Sci Rep.
               https://doi:10.1088/1758-5082/3/3/034102
                                                                  https://doi:10.1038/srep28714
            141.  Omami M, McGarrigle JJ, Reedy M,  et  al., 2017, Islet
               microencapsulation: Strategies and clinical status in   152.  Akkouch A, Yu Y, Ozbolat IT, 2015, Microfabrication of
               diabetes. Curr Diab Rep, 17: 47.                   scaffold-free tissue strands for three-dimensional tissue
                                                                  engineering. Biofabrication, 7: 031002.
               https://doi:10.1007/s11892-017-0877-0
                                                                  https://doi:10.1088/1758-5090/7/3/031002
            142.  Bai X, Pei Q, Pu C,  et  al., 2020, Multifunctional islet
               transplantation hydrogel encapsulating A20 high-expressing   153.  Marchioli G, van Gurp L, van Krieken PP, et al., 2015, Fabrication
               islets. Drug Des Devel Ther, 14: 4021–4027.        of three-dimensional bioplotted hydrogel scaffolds for islets of
                                                                  Langerhans transplantation. Biofabrication, 7: 025009.
               https://doi:10.2147/DDDT.S273050
                                                                  https://doi:10.1088/1758-5090/7/2/025009
            143.  Knobeloch T, Abadi SEM, Bruns J, et al., 2017, Injectable
               polyethylene glycol hydrogel for islet encapsulation: an in   154.  Liu X, Carter S-SD, Renes MJ, et al., 2019, Development of a
               vitro and in vivo characterization. Biomed Phys Eng Express,   coaxial 3D printing platform for biofabrication of implantable
               3: 035022.                                         islet-containing constructs. Adv Healthc Mater, 8: e1801181.
               https://doi:10.1088/2057-1976/aa742b               https://doi:10.1002/adhm.201801181
            144.  Ouyang L, Dan Y, Shao Z, et al., 2019, MMP-sensitive PEG   155.  Liu X, Carter SD, Renes MJ,  et  al., 2019, Pancreatic islet
               hydrogel modified with RGD promotes bFGF, VEGF and   transplantation: Development of a coaxial 3D printing
               EPC-mediated angiogenesis. Exp Ther Med, 18: 2933–2941.  platform for biofabrication of implantable islet‐containing
                                                                  constructs. Adv Healthc Mater, 8: 1970029.
               https://doi:10.3892/etm.2019.7885
                                                                  https://doi:10.1002/adhm.201970029
            145.  Weber LM, Anseth KS, 2008, Hydrogel encapsulation
               environments functionalized with extracellular matrix   156.  Farina M, Ballerini A, Fraga DW, et al., 2017, 3D printed
               interactions increase islet insulin secretion. Matrix Biol, 27:   vascularized  device  for  subcutaneous  transplantation  of
               667–673.                                           human islets. Biotechnol J, 12: 1700169.
               https://doi:10.1016/j.matbio.2008.08.001           https://doi:10.1002/biot.201700169
            146.  Song J, Millman JR, 2016, Economic 3D-printing approach   157.  Kim J, Shim IK, Hwang DG, et al., 2019, 3D cell printing
               for transplantation of human stem cell-derived β -like cells.   of islet-laden pancreatic tissue-derived extracellular matrix
               Biofabrication, 9: 015002.                         bioink constructs for enhancing pancreatic functions.
                                                                  J Mater Chem B Mater Biol Med, 7: 1773–1781.

            Volume 9 Issue 2 (2023)                        277                     http://doi.org/10.18063/ijb.v9i2.665
   280   281   282   283   284   285   286   287   288   289   290