Page 285 - IJB-9-2
P. 285
International Journal of Bioprinting Bioprinting of β-islet-like constructs
https://doi:10.1098/rstb.2017.0230 https://doi:10.1088/1758-5090/9/1/015002
136. Greggio C, De Franceschi F, Figueiredo-Larsen M, et al., 147. Daoud JT, Petropavlovskaia MS, Patapas JM, et al., 2011,
2013, Artificial three-dimensional niches deconstruct Long-term in vitro human pancreatic islet culture using
pancreas development in vitro. Development, 140: three-dimensional microfabricated scaffolds. Biomaterials,
4452–4462. 32: 1536–1542.
https://doi:10.1242/dev.096628 https://doi:10.1016/j.biomaterials.2010.10.036
137. Haque MR, Lee DY, Ahn C-H, et al., 2014, Local co- 148. Salg GA, Poisel E, Neulinger-Munoz M, et al., 2022, Toward
delivery of pancreatic islets and liposomal clodronate using 3D-bioprinting of an endocrine pancreas: A building-block
injectable hydrogel to prevent acute immune reactions in a concept for bioartificial insulin-secreting tissue. J Tissue Eng,
type 1 diabetes. Pharm Res, 31: 2453–2462. 13: 204173142210910.
https://doi:10.1007/s11095-014-1340-4 https://doi:10.1177/20417314221091033
149. Athanasiou KA, Eswaramoorthy R, Hadidi P, et al., 2013,
138. Pati F, Gantelius J, Svahn HA, 2016, 3D bioprinting of tissue/
organ models. Angew Chem Int Ed Engl, 55: 4650–4665. Self-organization and the self-assembling process in tissue
engineering. Annu Rev Biomed Eng, 15: 115–136.
https://doi:10.1002/anie.201505062
https://doi:10.1146/annurev-bioeng-071812-152423
139. Gentile P, Chiono V, Carmagnola I, et al., 2014, An overview 150. Ovsianikov A, Khademhosseini A, Mironov V, 2018,
of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials The Synergy of Scaffold-Based and Scaffold-Free Tissue
for bone tissue engineering. Int J Mol Sci, 15: 3640–3659.
Engineering Strategies. Trends Biotechnol, 36: 348–357.
https://doi:10.3390/ijms15033640
https://doi:10.1016/j.tibtech.2018.01.005
140. Shim J-H, Kim JY, Park M, et al., 2011, Development of a
hybrid scaffold with synthetic biomaterials and hydrogel using 151. Yu Y, Moncal KK, Li J, et al., 2016, Three-dimensional
solid freeform fabrication technology. Biofabrication, 3: 034102. bioprinting using self-assembling scalable scaffold-free
“tissue strands” as a new bioink. 6: Sci Rep.
https://doi:10.1088/1758-5082/3/3/034102
https://doi:10.1038/srep28714
141. Omami M, McGarrigle JJ, Reedy M, et al., 2017, Islet
microencapsulation: Strategies and clinical status in 152. Akkouch A, Yu Y, Ozbolat IT, 2015, Microfabrication of
diabetes. Curr Diab Rep, 17: 47. scaffold-free tissue strands for three-dimensional tissue
engineering. Biofabrication, 7: 031002.
https://doi:10.1007/s11892-017-0877-0
https://doi:10.1088/1758-5090/7/3/031002
142. Bai X, Pei Q, Pu C, et al., 2020, Multifunctional islet
transplantation hydrogel encapsulating A20 high-expressing 153. Marchioli G, van Gurp L, van Krieken PP, et al., 2015, Fabrication
islets. Drug Des Devel Ther, 14: 4021–4027. of three-dimensional bioplotted hydrogel scaffolds for islets of
Langerhans transplantation. Biofabrication, 7: 025009.
https://doi:10.2147/DDDT.S273050
https://doi:10.1088/1758-5090/7/2/025009
143. Knobeloch T, Abadi SEM, Bruns J, et al., 2017, Injectable
polyethylene glycol hydrogel for islet encapsulation: an in 154. Liu X, Carter S-SD, Renes MJ, et al., 2019, Development of a
vitro and in vivo characterization. Biomed Phys Eng Express, coaxial 3D printing platform for biofabrication of implantable
3: 035022. islet-containing constructs. Adv Healthc Mater, 8: e1801181.
https://doi:10.1088/2057-1976/aa742b https://doi:10.1002/adhm.201801181
144. Ouyang L, Dan Y, Shao Z, et al., 2019, MMP-sensitive PEG 155. Liu X, Carter SD, Renes MJ, et al., 2019, Pancreatic islet
hydrogel modified with RGD promotes bFGF, VEGF and transplantation: Development of a coaxial 3D printing
EPC-mediated angiogenesis. Exp Ther Med, 18: 2933–2941. platform for biofabrication of implantable islet‐containing
constructs. Adv Healthc Mater, 8: 1970029.
https://doi:10.3892/etm.2019.7885
https://doi:10.1002/adhm.201970029
145. Weber LM, Anseth KS, 2008, Hydrogel encapsulation
environments functionalized with extracellular matrix 156. Farina M, Ballerini A, Fraga DW, et al., 2017, 3D printed
interactions increase islet insulin secretion. Matrix Biol, 27: vascularized device for subcutaneous transplantation of
667–673. human islets. Biotechnol J, 12: 1700169.
https://doi:10.1016/j.matbio.2008.08.001 https://doi:10.1002/biot.201700169
146. Song J, Millman JR, 2016, Economic 3D-printing approach 157. Kim J, Shim IK, Hwang DG, et al., 2019, 3D cell printing
for transplantation of human stem cell-derived β -like cells. of islet-laden pancreatic tissue-derived extracellular matrix
Biofabrication, 9: 015002. bioink constructs for enhancing pancreatic functions.
J Mater Chem B Mater Biol Med, 7: 1773–1781.
Volume 9 Issue 2 (2023) 277 http://doi.org/10.18063/ijb.v9i2.665

