Page 283 - IJB-9-2
P. 283

International Journal of Bioprinting                                    Bioprinting of β-islet-like constructs



               https://doi:10.1073/pnas.1113560109                https://doi:10.1016/j.ejpb.2007.08.012
            91.   Coronel MM, Liang J-P, Li Y, et al., 2019, Oxygen generating   103.  Kharkar PM, Kiick KL, Kloxin AM, 2015, Design of thiol-
               biomaterial improves the function and efficacy of beta   and light-sensitive degradable hydrogels using Michael-type
               cells within a macroencapsulation device.  Biomaterials,    addition reactions. Polym Chem, 6: 5565–5574.
               210: 1–11.                                         https://doi:10.1039/c5py00750j
               https://doi:10.1016/j.biomaterials.2019.04.017  104.  Cevik  O,  Gidon  D,  Kizilel  S,  2015,  Visible-light-induced
            92.   Khademhosseini A, Langer R, 2016, A decade of progress in   synthesis of pH-responsive composite hydrogels for
               tissue engineering. Nat Protoc, 11: 1775–1781.     controlled delivery of the anticonvulsant drug pregabalin.
                                                                  Acta Biomater, 11: 151–161.
               https://doi:10.1038/nprot.2016.123
                                                                  https://doi:10.1016/j.actbio.2014.09.018
            93.   Olsen BD, Kornfield JA, Tirrell DA, 2010, Yielding
               behavior in injectable hydrogels from telechelic proteins.   105.  Cinay GE, Erkoc P, Alipour M,  et  al., 2017, Nanogel-
               Macromolecules, 43: 9094–9099.                     integrated pH-responsive composite hydrogels for
                                                                  controlled drug delivery. ACS Biomater Sci Eng, 3: 370–380.
               https://doi:10.1021/ma101434a
                                                                  https://doi:10.1021/acsbiomaterials.6b00670
            94.   Appel EA, del Barrio J, Loh XJ, et al., 2012, Supramolecular
               polymeric hydrogels. Chem Soc Rev, 18: 6195.    106.  Erkoc P, Cingöz A, Bagci-Onder T, et al., 2017, Quinacrine
                                                                  mediated sensitization of glioblastoma (GBM) cells to trail
               https://doi:10.1039/c2cs35264h                     through MMP-sensitive PEG hydrogel carriers.  Macromol
            95.   Appel EA, Loh XJ, Jones ST, et al., 2012, Sustained release of   Biosci, 17: 1600267.
               proteins from high water content supramolecular polymer   https://doi:10.1002/mabi.201600267
               hydrogels. Biomaterials, 33: 4646–4652.
                                                               107.  Yang J-A, Yeom J, Hwang BW, et al., 2014, In situ-forming
               https://doi:10.1016/j.biomaterials.2012.02.030
                                                                  injectable hydrogels for regenerative medicine. Prog Polym
            96.    Majee SB (ed.), 2016, An introduction to hydrogels and   Sci, 39: 1973–1986.
               some recent applications, in Emerging Concepts in Analysis   https://doi:10.1016/j.progpolymsci.2014.07.006
               and Applications of Hydrogels, IntechOpen, Rijeka.
                                                               108.  Augst AD, Kong HJ, Mooney DJ, 2006, Alginate hydrogels as
               https://doi:10.5772/64301
                                                                  biomaterials. Macromol Biosci, 6: 623–633.
            97.   Miao S, Castro N, Nowicki M, et al., 2017, 4D printing of
               polymeric materials for tissue and organ regeneration.   https://doi:10.1002/mabi.200600069
               Mater Today, 20: 577–591.                       109.  de Vos P, Hamel AF, Tatarkiewicz K, 2002, Considerations
               https://doi:10.1016/j.mattod.2017.06.005           for successful transplantation of encapsulated pancreatic
                                                                  islets. Diabetologia, 45: 159–173.
            98.   Malda J, Visser J, Melchels FP, et al., 2013, 25th anniversary
               article: Engineering hydrogels for biofabrication. Adv Mater,   https://doi:10.1007/s00125-001-0729-x
               25: 5011–5028.                                  110.  Mallett AG, Korbutt GS, 2009, Alginate modification
               https://doi:10.1002/adma.201302042                 improves long-term survival and function of transplanted
                                                                  encapsulated islets. Tissue Eng Part A, 15: 1301–1309.
            99.   Drury JL, Mooney DJ, 2003, Hydrogels for tissue engineering:
               Scaffold design variables and applications. Biomaterials, 24:   https://doi:10.1089/ten.tea.2008.0118
               4337–4351.                                      111.  Hals  IK,  Rokstad AM,  Strand  BL,  et  al., 2013,  Alginate
               https://doi:10.1016/s0142-9612(03)00340-5          microencapsulation of  human  islets  does  not  increase
            100.  Kopeček J, Yang J, 2007, Hydrogels as smart biomaterials.   susceptibility to acute hypoxia. J Diabetes Res, 2013: 374925.
               Polym Int, 56: 1078–1098.                          https://doi:10.1155/2013/374925
               https://doi:10.1002/pi.2253                     112.  Marchioli G, Di Luca A, de Koning E, et al., 2016, Hybrid
            101.  Bal T, Nazli C, Okcu A,  et  al.,2017, Mesenchymal stem   Polycaprolactone/alginate  scaffolds  functionalized
               cells and ligand incorporation in biomimetic poly(ethylene   with vegf to promote de novo vessel formation for the
               glycol) hydrogels significantly improve insulin secretion   transplantation of islets of langerhans. Adv Healthc Mater, 5:
               from pancreatic islets. J Tissue Eng Regen Med, 11: 694–703.  1606–1616.
               https://doi:10.1002/term.1965                      https://doi:10.1002/adhm.201600058
            102.  Fang J, 2008, Temperature-sensitive hydrogels composed of   113.  Bloch  K, Papismedov E, Yavriyants  K,  et  al., 2006,
               chitosan and hyaluronic acid as injectable carriers for drug   Photosynthetic oxygen generator for bioartificial pancreas.
               delivery. Eur J Pharm Biopharm, 68: 626–636.       Tissue Eng, 12: 337–344.



            Volume 9 Issue 2 (2023)                        275                     http://doi.org/10.18063/ijb.v9i2.665
   278   279   280   281   282   283   284   285   286   287   288