Page 322 - IJB-9-2
P. 322
International Journal of Bioprinting Flexible 3D printing in cardiovascular medicine
Author contributions Group (SIG): Guidelines for medical 3D printing and
appropriateness for clinical scenarios. 3D Print Med, 4(1): 11.
Conceptualization: Reinhard Kaufmann
Investigation: Reinhard Kaufmann, Michael Deutschmann, https://doi.org/10.1186/s41205-018-0030-y
Stefan Hecht 6. Ballard D, Wake N, Witowski J, et al., 2020, Radiological Society
Funding acquisition: Klaus Hergan, Reinhard Kaufmann of North America (RSNA) 3D printing Special Interest Group
Project administration: Matthias Meissnitzer, Klaus Hergan (SIG) clinical situations for which 3D printing is considered an
Resources: Andreas Vötsch, Christian Dinges appropriate representation or extension of data contained in a
Software: Reinhard Kaufmann medical imaging examination: Abdominal, hepatobiliary, and
gastrointestinal conditions. 3D Print Med, 6(1): 13.
Visualization: Bernhard Scharinger, Reinhard Kaufmann
Writing – original draft: Reinhard Kaufmann, Stefan Hecht https://doi.org/10.1186/s41205-020-00065-6
Writing – review & editing: Bernhard Scharinger, Stefan 7. Ali A, Ballard D, Althobaity W, et al., 2020, Clinical
Hecht situations for which 3D printing is considered an appropriate
representation or extension of data contained in a medical
Ethics approval and consent to participate imaging examination: Adult cardiac conditions. 3D Print
Med, 6(1): 24.
This study was approved by the Institutional Review https://doi.org/10.1186/s41205-020-00078-1
Board (IRB) of the Paracelsus Medical University Salzburg
(IRB-No.: SS22-0017-0017). 8. Bastawrous S, Wu L, Liacouras P, et al., 2022, Establishing
3D printing at the point of care: Basic principles and tools
Consent for publication for success. Radiographics, 42(2):451–468.
https://doi.org/10.1148/rg.210113
The consent for publication was given by the Institutional 9. Alexander A, Wake N, Chepelev L, et al., 2021, A guideline
Review Board of the Paracelsus Medical University as for 3D printing terminology in biomedical research utilizing
all patient identifiers were irreversibly removed from ISO/ASTM standards. 3D Print Med, 7(1):8.
this study.
https://doi.org/10.1186/s41205-021-00098-5
Availability of data 10. Rueden C, Schindelin J, Hiner M, et al., 2017, ImageJ2:
ImageJ for the next generation of scientific image data. BMC
Not applicable. Bioinf, 18(1):529.
https://doi.org/10.1186/s12859-017-1934-z
References
11. Community, B.O., 2018, Blender - a 3D modelling
1. Jones T, Seckeler M, 2017, Use of 3D models of vascular and rendering package, Stichting Blender Foundation,
rings and slings to improve resident education. Congen Amsterdam. Available at: http://www.blender.org.
Heart Dis, 12(5):578–582. 12. Schmid B, Schindelin J, Cardona A, et al., 2010, A high-
https://doi.org/10.1111/chd.12486 level 3D visualization API for Java and ImageJ. BMC Bioinf,
11(1): 274.
2. White S, Sedler J, Jones, et al., 2018, Utility of three-
dimensional models in resident education on simple and https://doi.org/10.1186/1471-2105-11-274
complex intracardiac congenital heart defects. Congen Heart 13. Perica E, Sun Z, 2018, A systematic review of three-dimensional
Dis, 13(6):1045–1049. printing in liver disease. J Digit Imaging, 31(5):692–701.
https://doi.org/10.1111/chd.12673 https://doi.org/10.1007/s10278-018-0067-x
3. Borràs-Novell C, García Causapié M, Murcia M, et al., 2022, 14. Yang D, Park S, Lee K, et al., 2018, Applications of three-
Development of a 3D individualized mask for neonatal non- dimensional printing in cardiovascular surgery: A case-
invasive ventilation. Int J Bioprint, 8(2): 516. based review. Cardiovasc Imaging Asia, 2(4):166.
https://doi.org/10.18063/ijb.v8i2.516 https://doi.org/10.22468/cvia.2018.00199
4. Wagner M, Werther T, Unger E, et al., 2021, Development 15. Oliveira-Santos M, Oliveira Santos E, Marinho A, et al., 2018,
of a 3D printed patient-specific neonatal brain simulation Patient-specific 3D printing simulation to guide complex
model using multimodality imaging for perioperative coronary intervention. Rev Port Cardiol, 37(6):541.e1–541.e4.
management. Pediatr Res, 91(1):64–69. https://doi.org/10.1016/j.repc.2018.02.007
https://doi.org/10.1038/s41390-021-01421-w 16. Shibata E, Takao H, Amemiya S, et al., 2020, Embolization
of visceral arterial aneurysms: Simulation with 3D-printed
5. Chepelev L, Wake N, Ryan J, et al., 2018, Radiological Society
of North America (RSNA) 3D printing Special Interest models. Vascular, 28(3):259–266.
https://doi.org/10.1177/1708538119900834
Volume 9 Issue 2 (2023) 314 https://doi.org/10.18063/ijb.v9i2.669

