Page 459 - IJB-9-2
P. 459

International Journal of Bioprinting                    Fabrication of 3D functional hydrogel for wound dressings



            34.  Neto AI, Cibrao AC, Correia CR, et al., 2014, Nanostructured   printable wound dressing materials. Macromol Biosci, 18(5):
               polymeric coatings based on chitosan and dopamine-  1700414.
               modified hyaluronic acid for biomedical applications. Small,
               10(12):2459–2469.                                  https://doi.org/10.1002/mabi.201700414
               https://doi.org/10.1002/smll.201303568          45.  Long J, Etxeberria AE, Nand AV, et al., 2019, A 3D printed
                                                                  chitosan-pectin hydrogel wound dressing for lidocaine
            35.  Hong  S, Yang  K,  Kang B, et al.,  2013, Hyaluronic acid   hydrochloride  delivery.  Mater Sci Eng C Mater Biol Appl,
               catechol: A biopolymer exhibiting a pH-dependent adhesive   104:109873.
               or cohesive property for human neural stem cell engineering.
               Adv Funct Mater, 23(14):1774–1780.                 https://doi.org/10.1016/j.msec.2019.109873
               https://doi.org/10.1002/adfm.201202365          46.  Zhao X, Li P, Guo B, et al., 2015, Antibacterial and conductive
                                                                  injectable hydrogels based on quaternized chitosan-graft-
            36.  Leppiniemi J, Lahtinen P, Paajanen A, et al., 2017,
               3D-printable bioactivated nanocellulose-alginate hydrogels.   polyaniline/oxidized dextran for tissue engineering.  Acta
                                                                  Biomater, 26:236–248.
               ACS Appl Mater Interfaces, 9(26):21959–21970.
                                                                  https://doi.org/10.1016/j.actbio.2015.08.006
               https://doi.org/10.1021/acsami.7b02756
                                                               47.  Qu J, Zhao X, Liang Y, et al., 2019, Degradable conductive
            37.  Teoh  JH,  Mozhi  A,  Sunil  V, et al.,  2021,  3D  printing   injectable hydrogels as novel antibacterial, anti-oxidant
               personalized, photocrosslinkable hydrogel wound dressings   wound dressings for wound healing.  Chem Eng J, 362:
               for the treatment of thermal burns.  Adv Funct Mater,   548–560.
               31(48):2105932.
                                                                  https://doi.org/10.1016/j.cej.2019.01.028
               https://doi.org/10.1002/adfm.202105932
                                                               48.  Chung Y-C, Chen C-Y, 2008, Antibacterial characteristics
            38.  Guo Y, Huang J, Fang Y, et al., 2022, 1D, 2D, and 3D scaffolds   and activity of acid-soluble chitosan.  Bioresour Technol,
               promoting angiogenesis for enhanced wound healing. Chem   99(8):2806–2814.
               Eng J, 437:134690.
                                                                  https://doi.org/10.1016/j.biortech.2007.06.044
               https://doi.org/10.1016/j.cej.2022.134690
                                                               49.  Wu L, Wu Y, Che X, et al., 2021, Characterization, antioxidant
            39.  Chen X, Han S, Wu W, et al., 2022, Harnessing 4D   activity, and biocompatibility of selenium nanoparticle-
               printing bioscaffolds for advanced orthopedics.  Small,
               18(36):e2106824.                                   loaded thermosensitive chitosan hydrogels. J Biomater Sci
                                                                  Polym Ed, 32(10):1370–1385.
               https://doi.org/10.1002/smll.202106824
                                                                  https://doi.org/10.1080/09205063.2021.1917813
            40.  Fayyazbakhsh F, Khayat MJ, Leu MC, 2022, 3D-printed   50.  Xu J, Fang H, Su Y, et al., 2022, A 3D bioprinted
               gelatin-alginate hydrogel dressings for burn wound healing:   decellularized  extracellular  matrix/gelatin/quaternized
               A comprehensive study. Int J Bioprint, 8(4):618.
                                                                  chitosan scaffold assembling with poly(ionic liquid)
               https://doi.org/10.18063/ijb.v8i4.618              s for skin tissue engineering.  Int J Biol Macromol, 220:
                                                                  1253–1266.
            41.  Liu Y, Wong CW, Chang SW, et al., 2021, An injectable, self-
               healing phenol-functionalized chitosan hydrogel with fast   https://doi.org/10.1016/j.ijbiomac.2022.08.149
               gelling property and visible light-crosslinking capability for   51.  Lim SH, Hudson SM,  2004, Synthesis  and antimicrobial
               3D printing. Acta Biomater, 122:211–219.
                                                                  activity of a water-soluble chitosan derivative with a fiber-
               https://doi.org/10.1016/j.actbio.2020.12.051       reactive group. Carbohydr Res, 339(2):313–319.
            42.  Zhong H, Huang J, Wu J,  et  al., 2021, Electrospinning   https://doi.org/10.1016/j.carres.2003.10.024
               nanofibers to 1D, 2D, and 3D scaffolds and their biomedical   52.  Podstawczyk D, Niziol M, Szymczyk-Ziolkowska P, et al.,
               applications. Nano Res, 15(2):787–804.
                                                                  2021, Development of thermoinks for 4D direct printing of
               https://doi.org/10.1007/s12274-021-3593-7          temperature-induced self-rolling hydrogel actuators.  Adv
                                                                  Funct Mater, 31(15):2009664.
            43.  Wu Z, Hong Y, 2019, Combination of the silver-ethylene
               interaction and 3D printing to develop antibacterial   https://doi.org/10.1002/adfm.202009664
               superporous hydrogels for wound management. ACS Appl   53.  Qu J, Zhao X, Liang Y, et al., 2018, Antibacterial adhesive
               Mater Interfaces, 11(37):33734–33747.
                                                                  injectable hydrogels with rapid self-healing, extensibility
               https://doi.org/10.1021/acsami.9b14090             and compressibility as wound dressing for joints skin wound
                                                                  healing. Biomaterials, 183:185–199.
            44.  Streifel BC, Lundin JG, Sanders AM, et al., 2018, Hemostatic
               and absorbent polyHIPE-kaolin composites for 3D    https://doi.org/10.1016/j.biomaterials.2018.08.044




            Volume 9 Issue 2 (2023)                        451                          https://doi.org/10.18063/ijb.689
   454   455   456   457   458   459   460   461   462   463   464