Page 459 - IJB-9-2
P. 459
International Journal of Bioprinting Fabrication of 3D functional hydrogel for wound dressings
34. Neto AI, Cibrao AC, Correia CR, et al., 2014, Nanostructured printable wound dressing materials. Macromol Biosci, 18(5):
polymeric coatings based on chitosan and dopamine- 1700414.
modified hyaluronic acid for biomedical applications. Small,
10(12):2459–2469. https://doi.org/10.1002/mabi.201700414
https://doi.org/10.1002/smll.201303568 45. Long J, Etxeberria AE, Nand AV, et al., 2019, A 3D printed
chitosan-pectin hydrogel wound dressing for lidocaine
35. Hong S, Yang K, Kang B, et al., 2013, Hyaluronic acid hydrochloride delivery. Mater Sci Eng C Mater Biol Appl,
catechol: A biopolymer exhibiting a pH-dependent adhesive 104:109873.
or cohesive property for human neural stem cell engineering.
Adv Funct Mater, 23(14):1774–1780. https://doi.org/10.1016/j.msec.2019.109873
https://doi.org/10.1002/adfm.201202365 46. Zhao X, Li P, Guo B, et al., 2015, Antibacterial and conductive
injectable hydrogels based on quaternized chitosan-graft-
36. Leppiniemi J, Lahtinen P, Paajanen A, et al., 2017,
3D-printable bioactivated nanocellulose-alginate hydrogels. polyaniline/oxidized dextran for tissue engineering. Acta
Biomater, 26:236–248.
ACS Appl Mater Interfaces, 9(26):21959–21970.
https://doi.org/10.1016/j.actbio.2015.08.006
https://doi.org/10.1021/acsami.7b02756
47. Qu J, Zhao X, Liang Y, et al., 2019, Degradable conductive
37. Teoh JH, Mozhi A, Sunil V, et al., 2021, 3D printing injectable hydrogels as novel antibacterial, anti-oxidant
personalized, photocrosslinkable hydrogel wound dressings wound dressings for wound healing. Chem Eng J, 362:
for the treatment of thermal burns. Adv Funct Mater, 548–560.
31(48):2105932.
https://doi.org/10.1016/j.cej.2019.01.028
https://doi.org/10.1002/adfm.202105932
48. Chung Y-C, Chen C-Y, 2008, Antibacterial characteristics
38. Guo Y, Huang J, Fang Y, et al., 2022, 1D, 2D, and 3D scaffolds and activity of acid-soluble chitosan. Bioresour Technol,
promoting angiogenesis for enhanced wound healing. Chem 99(8):2806–2814.
Eng J, 437:134690.
https://doi.org/10.1016/j.biortech.2007.06.044
https://doi.org/10.1016/j.cej.2022.134690
49. Wu L, Wu Y, Che X, et al., 2021, Characterization, antioxidant
39. Chen X, Han S, Wu W, et al., 2022, Harnessing 4D activity, and biocompatibility of selenium nanoparticle-
printing bioscaffolds for advanced orthopedics. Small,
18(36):e2106824. loaded thermosensitive chitosan hydrogels. J Biomater Sci
Polym Ed, 32(10):1370–1385.
https://doi.org/10.1002/smll.202106824
https://doi.org/10.1080/09205063.2021.1917813
40. Fayyazbakhsh F, Khayat MJ, Leu MC, 2022, 3D-printed 50. Xu J, Fang H, Su Y, et al., 2022, A 3D bioprinted
gelatin-alginate hydrogel dressings for burn wound healing: decellularized extracellular matrix/gelatin/quaternized
A comprehensive study. Int J Bioprint, 8(4):618.
chitosan scaffold assembling with poly(ionic liquid)
https://doi.org/10.18063/ijb.v8i4.618 s for skin tissue engineering. Int J Biol Macromol, 220:
1253–1266.
41. Liu Y, Wong CW, Chang SW, et al., 2021, An injectable, self-
healing phenol-functionalized chitosan hydrogel with fast https://doi.org/10.1016/j.ijbiomac.2022.08.149
gelling property and visible light-crosslinking capability for 51. Lim SH, Hudson SM, 2004, Synthesis and antimicrobial
3D printing. Acta Biomater, 122:211–219.
activity of a water-soluble chitosan derivative with a fiber-
https://doi.org/10.1016/j.actbio.2020.12.051 reactive group. Carbohydr Res, 339(2):313–319.
42. Zhong H, Huang J, Wu J, et al., 2021, Electrospinning https://doi.org/10.1016/j.carres.2003.10.024
nanofibers to 1D, 2D, and 3D scaffolds and their biomedical 52. Podstawczyk D, Niziol M, Szymczyk-Ziolkowska P, et al.,
applications. Nano Res, 15(2):787–804.
2021, Development of thermoinks for 4D direct printing of
https://doi.org/10.1007/s12274-021-3593-7 temperature-induced self-rolling hydrogel actuators. Adv
Funct Mater, 31(15):2009664.
43. Wu Z, Hong Y, 2019, Combination of the silver-ethylene
interaction and 3D printing to develop antibacterial https://doi.org/10.1002/adfm.202009664
superporous hydrogels for wound management. ACS Appl 53. Qu J, Zhao X, Liang Y, et al., 2018, Antibacterial adhesive
Mater Interfaces, 11(37):33734–33747.
injectable hydrogels with rapid self-healing, extensibility
https://doi.org/10.1021/acsami.9b14090 and compressibility as wound dressing for joints skin wound
healing. Biomaterials, 183:185–199.
44. Streifel BC, Lundin JG, Sanders AM, et al., 2018, Hemostatic
and absorbent polyHIPE-kaolin composites for 3D https://doi.org/10.1016/j.biomaterials.2018.08.044
Volume 9 Issue 2 (2023) 451 https://doi.org/10.18063/ijb.689

