Page 21 - IJB-9-3
P. 21

International Journal of Bioprinting                        Bioprinting of PDAC microtissues for drug screening


            41.  Ying GL, Jiang N, Yu CJ,  et al., 2018, Three-dimensional   microspheres fabricated using electrostatic microdroplet
               bioprinting of gelatin methacryloyl (GelMA). Biodes Manuf,   method for endodontic regeneration. Mater Sci Eng C Mater
               1: 215–224.                                        Biol Appl, 121: 111850.
               https://doi.org/10.1007/s42242-018-0028-8          https://doi.org/10.1016/j.msec.2020.111850
            42.  Gudapati H, Dey M, Ozbolat I, 2016, A comprehensive   48.  Tanaka HY, Kurihara T, Nakazawa T, et al., 2020, Heterotypic
               review on droplet-based bioprinting: Past, present and   3D pancreatic  cancer model with tunable proportion of
               future. Biomaterials, 102: 20–42.                  fibrotic elements. Biomaterials, 251: 120077.
               https://doi.org/10.1016/j.biomaterials.2016.06.012     https://doi.org/10.1016/j.biomaterials.2020.120077
            43.  Miri AK, Hosseinabadi HG, Cecen B,  et  al., 2018,   49.  Wu FL, Yang J, Liu J,  et al., 2021, Signaling pathways in
               Permeability mapping of gelatin methacryloyl hydrogels.   cancer-associated fibroblasts and targeted therapy for
               Acta Biomater, 77: 38–47.                          cancer. Signal Transduct Target Ther, 6: 218.
               https://doi.org/10.1016/j.actbio.2018.07.006       https://doi.org/10.1038/s41392-021-00641-0
            44.  Zhou MM, Lee BH, Tan LP, 2017, A dual crosslinking strategy   50.  Boyd LN, Andini KD, Peters GJ, et al., 2022, Heterogeneity
               to tailor rheological properties of gelatin methacryloyl. Int J   and plasticity of cancer-associated fibroblasts in the pancreatic
               Bioprint, 3(2): 130–137.                           tumor microenvironment. Semin Cancer Biol, 82: 184–196.
               https://doi.org/10.18063/IJB.2017.02.003           https://doi.org/10.1016/j.semcancer.2021.03.006
            45.  Xu P, Guan J, Chen Y,  et al., 2021, Stiffness of   51.  Yang J, Li YZ, Sun ZW,  et al., 2021, Macrophages in
               photocrosslinkable gelatin hydrogel influences nucleus   pancreatic cancer: An immunometabolic perspective.
               pulposus cell properties in vitro. J Cell Mol Med, 25: 880–991.   Cancer Lett, 498: 188–200.
               https://doi.org/10.1111/jcmm.16141                 https://doi.org/10.1016/j.canlet.2020.10.029
            46.  Yang Y, Xu R, Wang C, et al., 2022, Recombinant human   52.  Nielsen MF, Mortensen MB, Detlefsen S, 2016, Key players
               collagen-based bioinks for the 3D bioprinting of full-  in pancreatic cancer-stroma interaction: Cancer-associated
               thickness human skin equivalent. Int J Bioprint, 8: 611.
                                                                  fibroblasts, endothelial and inflammatory cells.  World J
               http://doi.org/10.18063/ijb.v8i4.611               Gastroenterol, 22: 2678–2700.
            47.  Yang T, Zhang QY, Xie L, et al., 2021, hDPSC-laden GelMA      https://doi.org/10.3748/wjg.v22.i9.2678







































            Volume 9 Issue 3 (2023)                         13                      https://doi.org/10.18063/ijb.v9i3.676
   16   17   18   19   20   21   22   23   24   25   26